Suppr超能文献

结直肠癌预后表达特征基因上游调控因子的鉴定

Identification of upstream regulators for prognostic expression signature genes in colorectal cancer.

作者信息

Bae Taejeong, Rho Kyoohyoung, Choi Jin Woo, Horimoto Katsuhisa, Kim Wankyu, Kim Sunghoon

机构信息

Medicinal Bioconvergence Research Center, Advanced Institutes of Convergence Technology, Suwon 443-270, South Korea.

出版信息

BMC Syst Biol. 2013 Sep 4;7:86. doi: 10.1186/1752-0509-7-86.

Abstract

BACKGROUND

Gene expression signatures have been commonly used as diagnostic and prognostic markers for cancer subtyping. However, expression signatures frequently include many passengers, which are not directly related to cancer progression. Their upstream regulators such as transcription factors (TFs) may take a more critical role as drivers or master regulators to provide better clues on the underlying regulatory mechanisms and therapeutic applications.

RESULTS

In order to identify prognostic master regulators, we took the known 85 prognostic signature genes for colorectal cancer and inferred their upstream TFs. To this end, a global transcriptional regulatory network was constructed with total >200,000 TF-target links using the ARACNE algorithm. We selected the top 10 TFs as candidate master regulators to show the highest coverage of the signature genes among the total 846 TF-target sub-networks or regulons. The selected TFs showed a comparable or slightly better prognostic performance than the original 85 signature genes in spite of greatly reduced number of marker genes from 85 to 10. Notably, these TFs were selected solely from inferred regulatory links using gene expression profiles and included many TFs regulating tumorigenic processes such as proliferation, metastasis, and differentiation.

CONCLUSIONS

Our network approach leads to the identification of the upstream transcription factors for prognostic signature genes to provide leads to their regulatory mechanisms. We demonstrate that our approach could identify upstream biomarkers for a given set of signature genes with markedly smaller size and comparable performances. The utility of our method may be expandable to other types of signatures such as diagnosis and drug response.

摘要

背景

基因表达特征已被广泛用作癌症亚型的诊断和预后标志物。然而,表达特征通常包含许多与癌症进展无直接关联的“乘客”基因。其上游调节因子,如转录因子(TFs),可能作为驱动因子或主要调节因子发挥更关键的作用,从而为潜在的调节机制和治疗应用提供更好的线索。

结果

为了识别预后主要调节因子,我们选取了已知的85个结直肠癌预后特征基因,并推断出它们的上游转录因子。为此,使用ARACNE算法构建了一个包含超过200,000个TF-靶标链接的全局转录调控网络。我们选择了前10个转录因子作为候选主要调节因子,以在总共846个TF-靶标子网或调控子中显示对特征基因的最高覆盖率。尽管标记基因数量从85个大幅减少到10个,但所选转录因子的预后性能与原始的85个特征基因相当或略好。值得注意的是,这些转录因子完全是从利用基因表达谱推断出的调控链接中选择的,并且包括许多调节肿瘤发生过程(如增殖、转移和分化)的转录因子。

结论

我们的网络方法能够识别预后特征基因的上游转录因子,从而为其调控机制提供线索。我们证明,我们的方法能够识别一组给定特征基因的上游生物标志物,其数量明显更少且性能相当。我们方法的实用性可能扩展到其他类型的特征,如诊断和药物反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验