Suppr超能文献

q 循环中的笼闭、不稳定的自由基中间体。

A caged, destabilized, free radical intermediate in the q-cycle.

机构信息

Chemistry Department, University of Alabama, Box 870336, Tuscaloosa, AL 35487 (USA).

出版信息

Chembiochem. 2013 Sep 23;14(14):1745-53. doi: 10.1002/cbic.201300265. Epub 2013 Sep 5.

Abstract

The Rieske/cytochrome b complexes, also known as cytochrome bc complexes, catalyze a unique oxidant-induced reduction reaction at their quinol oxidase (Qo ) sites, in which substrate hydroquinone reduces two distinct electron transfer chains, one through a series of high-potential electron carriers, the second through low-potential cytochrome b. This reaction is a critical step in energy storage by the Q-cycle. The semiquinone intermediate in this reaction can reduce O2 to produce deleterious superoxide. It is yet unknown how the enzyme controls this reaction, though numerous models have been proposed. In previous work, we trapped a Q-cycle semiquinone anion intermediate, termed SQo , in bacterial cytochrome bc1 by rapid freeze-quenching. In this work, we apply pulsed-EPR techniques to determine the location and properties of SQo in the mitochondrial complex. In contrast to semiquinone intermediates in other enzymes, SQo is not thermodynamically stabilized, and can even be destabilized with respect to solution. It is trapped in Qo at a site that is distinct from previously described inhibitor-binding sites, yet sufficiently close to cytochrome bL to allow rapid electron transfer. The binding site and EPR analyses show that SQo is not stabilized by hydrogen bonds to proteins. The formation of SQo involves "stripping" of both substrate -OH protons during the initial oxidation step, as well as conformational changes of the semiquinone and Qo proteins. The resulting charged radical is kinetically trapped, rather than thermodynamically stabilized (as in most enzymatic semiquinone species), conserving redox energy to drive electron transfer to cytochrome bL while minimizing certain Q-cycle bypass reactions, including oxidation of prereduced cytochrome b and reduction of O2 .

摘要

Rieske/细胞色素 b 复合物,也称为细胞色素 bc 复合物,在其醌氧化酶 (Qo) 位点催化独特的氧化剂诱导还原反应,其中底物氢醌还原两个不同的电子转移链,一个通过一系列高电势电子载体,第二个通过低电势细胞色素 b。该反应是 Q 循环中能量储存的关键步骤。该反应中的半醌中间体可以还原 O2 产生有害的超氧化物。尽管已经提出了许多模型,但目前尚不清楚该酶如何控制该反应。在之前的工作中,我们通过快速冷冻-淬火在细菌细胞色素 bc1 中捕获了 Q 循环半醌阴离子中间体,称为 SQo。在这项工作中,我们应用脉冲 EPR 技术来确定线粒体复合物中 SQo 的位置和性质。与其他酶中的半醌中间体不同,SQo 没有热力学稳定性,甚至相对于溶液可以失稳。它在 Qo 中被捕获在一个与先前描述的抑制剂结合位点不同的位点,但足够接近细胞色素 bL 以允许快速电子转移。结合位点和 EPR 分析表明,SQo 不受蛋白质氢键的稳定。SQo 的形成涉及在初始氧化步骤中“剥夺”两个底物 -OH 质子,以及半醌和 Qo 蛋白的构象变化。所得的带电自由基被动力学捕获,而不是热力学稳定(如大多数酶半醌物种),从而保存氧化还原能量以驱动电子转移到细胞色素 bL,同时最小化某些 Q 循环旁路反应,包括预还原细胞色素 b 的氧化和 O2 的还原。

相似文献

1
A caged, destabilized, free radical intermediate in the q-cycle.
Chembiochem. 2013 Sep 23;14(14):1745-53. doi: 10.1002/cbic.201300265. Epub 2013 Sep 5.
2
A semiquinone intermediate generated at the Qo site of the cytochrome bc1 complex: importance for the Q-cycle and superoxide production.
Proc Natl Acad Sci U S A. 2007 May 8;104(19):7887-92. doi: 10.1073/pnas.0702621104. Epub 2007 Apr 30.
3
Triplet state of the semiquinone-Rieske cluster as an intermediate of electronic bifurcation catalyzed by cytochrome bc1.
Biochemistry. 2013 Sep 17;52(37):6388-95. doi: 10.1021/bi400624m. Epub 2013 Sep 4.
5
Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc1 complex.
Biochemistry. 2002 Jun 25;41(25):7866-74. doi: 10.1021/bi025581e.
6
Electron sweep across four b-hemes of cytochrome bc revealed by unusual paramagnetic properties of the Q semiquinone intermediate.
Biochim Biophys Acta Bioenerg. 2018 Jun;1859(6):459-469. doi: 10.1016/j.bbabio.2018.03.010. Epub 2018 Mar 27.
7
Activated Q-cycle as a common mechanism for cytochrome bc1 and cytochrome b6f complexes.
Biochim Biophys Acta. 2010 Dec;1797(12):1858-68. doi: 10.1016/j.bbabio.2010.07.008. Epub 2010 Jul 25.
8
Primary steps in the energy conversion reaction of the cytochrome bc1 complex Qo site.
J Bioenerg Biomembr. 1999 Jun;31(3):225-33. doi: 10.1023/a:1005467628660.

引用本文的文献

1
Flexibility and Hydration of the Q Site Determine Multiple Pathways for Proton Transfer in Cytochrome .
J Chem Inf Model. 2025 Jun 23;65(12):6184-6197. doi: 10.1021/acs.jcim.5c00655. Epub 2025 Jun 10.
2
Understanding coenzyme Q.
Physiol Rev. 2024 Oct 1;104(4):1533-1610. doi: 10.1152/physrev.00040.2023. Epub 2024 May 9.
3
Vitamin C as Scavenger of Reactive Oxygen Species during Healing after Myocardial Infarction.
Int J Mol Sci. 2024 Mar 7;25(6):3114. doi: 10.3390/ijms25063114.
5
Catalytic Reactions and Energy Conservation in the Cytochrome and Complexes of Energy-Transducing Membranes.
Chem Rev. 2021 Feb 24;121(4):2020-2108. doi: 10.1021/acs.chemrev.0c00712. Epub 2021 Jan 19.
6
Analysis of a Functional Dimer Model of Ubiquinol Cytochrome c Oxidoreductase.
Biophys J. 2017 Oct 3;113(7):1599-1612. doi: 10.1016/j.bpj.2017.08.018.
9
Towards an understanding of redox heterogeneity of the photosystem II cytochrome b559 in the native membrane.
Eur Biophys J. 2016 Mar;45(2):129-38. doi: 10.1007/s00249-015-1082-1. Epub 2015 Oct 7.

本文引用的文献

1
How rapid are the internal reactions of the ubiquinol:cytochrome c 2 oxidoreductase?
Photosynth Res. 1989 Jan;22(1):69-87. doi: 10.1007/BF00114768.
3
Conformationally linked interaction in the cytochrome bc(1) complex between inhibitors of the Q(o) site and the Rieske iron-sulfur protein.
Biochim Biophys Acta. 2011 Oct;1807(10):1349-63. doi: 10.1016/j.bbabio.2011.04.005. Epub 2011 May 3.
7
Characterization of the semiquinone radical stabilized by the cytochrome aa3-600 menaquinol oxidase of Bacillus subtilis.
J Biol Chem. 2010 Jun 11;285(24):18241-51. doi: 10.1074/jbc.M110.116186. Epub 2010 Mar 29.
8
Substrate redox potential controls superoxide production kinetics in the cytochrome bc complex.
Biochemistry. 2009 Nov 17;48(45):10716-23. doi: 10.1021/bi901205w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验