Suppr超能文献

Q 位点的柔韧性和水合作用决定了细胞色素中质子转移的多种途径。

Flexibility and Hydration of the Q Site Determine Multiple Pathways for Proton Transfer in Cytochrome .

作者信息

Camilo Sofia R G, Arantes Guilherme M

机构信息

Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil.

出版信息

J Chem Inf Model. 2025 Jun 23;65(12):6184-6197. doi: 10.1021/acs.jcim.5c00655. Epub 2025 Jun 10.

Abstract

The detailed catalytic activity of cytochrome (or respiratory complex III) and the molecular mechanism of the Q cycle remain elusive. At the Q site, the cycle begins with oxidation of the coenzyme-Q substrate (quinol form) in a bifurcated two-electron transfer to the iron-sulfur (FeS) cluster and the heme center. The release of two protons during quinol oxidation and their transfer is less understood, with one proton likely delivered to the histidine side chain attached to the FeS cluster. Here, we present extensive molecular dynamics simulations with enhanced sampling of side-chain torsions at the Q site and analyze available sequences and structures of several homologs to probe the interactions of quinol with potential proton acceptors and identify viable pathways for proton transfer. Our findings reveal that side chains at the Q site are highly flexible and can adopt multiple conformations. Consequently, the quinol head is also flexible, adopting three distinct binding modes. Two of these modes are proximal to the heme and represent reactive conformations capable of electron and proton transfer, while the third, more distal mode likely, represents a prereactive state, consistent with recent cryo-EM structures of with bound coenzyme-Q. The Q site is highly hydrated, with several water molecules bridging interactions between the quinol head and the conserved side chains Tyr147, Glu295, and Tyr297 in cytochrome (numbering according to ), facilitating proton transfer. A hydrogen bond network and at least five distinct proton wires are established and possibly transport protons via a Grotthuss mechanism. Asp278 and propionate-A of heme in cytochrome are in direct contact with external water and are proposed as the final proton acceptors. The intervening water molecules in these proton wires exhibit low mobility, and some have been resolved in recent experimental structures. These results help to elucidate the intricate molecular mechanism of the Q-cycle and pave the way to a detailed understanding of chemical proton transport in several bioenergetic enzymes that catalyze coenzyme-Q redox reactions.

摘要

细胞色素bc1(或呼吸复合物III)的详细催化活性以及Q循环的分子机制仍然难以捉摸。在Q位点,该循环始于辅酶Q底物(醌醇形式)的氧化,通过双分支双电子转移至铁硫(FeS)簇和血红素bL中心。醌醇氧化过程中两个质子的释放及其转移情况尚不太清楚,其中一个质子可能传递至与FeS簇相连的组氨酸侧链。在此,我们进行了广泛的分子动力学模拟,增强了对Q位点侧链扭转的采样,并分析了几种bc1同系物的可用序列和结构,以探究醌醇与潜在质子受体的相互作用,并确定质子转移的可行途径。我们的研究结果表明,Q位点的侧链具有高度灵活性,能够采取多种构象。因此,醌醇头部也具有灵活性,呈现出三种不同的结合模式。其中两种模式靠近血红素bL,代表能够进行电子和质子转移的反应性构象,而第三种更远离的模式可能代表预反应状态,这与最近结合辅酶Q的bc1的低温电子显微镜结构一致。Q位点高度水合,有几个水分子桥接细胞色素bc1中醌醇头部与保守侧链Tyr147、Glu295和Tyr297之间的相互作用(编号根据[具体文献]),促进质子转移。建立了一个氢键网络和至少五条不同的质子线,并可能通过Grotthuss机制传输质子。细胞色素bc1中血红素bL的Asp278和丙酸酯 - A与外部水直接接触,并被认为是最终的质子受体。这些质子线中的中间水分子流动性较低,其中一些已在最近的实验结构中得到解析。这些结果有助于阐明Q循环复杂的分子机制,并为详细了解几种催化辅酶Q氧化还原反应的生物能量酶中的化学质子传输铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4920/12199298/88585292e541/ci5c00655_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验