RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
Plant Cell Physiol. 2013 Nov;54(11):1837-51. doi: 10.1093/pcp/pct125. Epub 2013 Sep 4.
Endogenous levels of bioactive gibberellins (GAs) are controlled by both biosynthetic and inactivation processes, and some cytochrome P450s are involved in this control mechanism. We have previously reported that CYP714B1 and CYP714B2 encode the enzyme GA 13-oxidase, which is required for GA1 biosynthesis, and that CYP714D1 encodes GA 16α,17-epoxidase, which inactivates the non-13-hydroxy GAs in rice. Arabidopsis has two CYP714 members, CYP714A1 and CYP714A2. To clarify the possible role of these genes in GA metabolism, enzymatic activities of their recombinant proteins were analyzed using a yeast expression system. We found that the recombinant CYP714A1 protein catalyzes the conversion of GA12 to 16-carboxylated GA12 (16-carboxy-16β,17-dihydro GA12), a previously unidentified GA metabolite. Bioassays of this GA product showed that CYP714A1 is an inactivation enzyme in Arabidopsis. This was confirmed by the extreme GA-deficient dwarf phenotype shown by CYP714A1-overexpressing plants. Intriguingly, the recombinant CYP714A2 protein catalyzed the conversion of ent-kaurenoic acid into steviol (ent-13-hydroxy kaurenoic acid). When GA12 was used as a substrate for CYP714A2, 12α-hydroxy GA12 (GA111) was produced as a major product and 13-hydroxy GA12 (GA53) as a minor product. Transgenic Arabidopsis plants overexpressing the CYP714A2 gene showed semi-dwarfism. GA analysis showed that the levels of non-13-hydroxy GAs, including GA4, were decreased, whereas those of 13-hydroxy GAs, including GA1 (which is less active than GA4), were increased in the transgenic plants. Our results suggest that the CYP714 family proteins contribute to the production of diverse GA compounds through various oxidations of C and D rings in both monocots and eudicots.
植物内源生物活性赤霉素(GAs)的水平受生物合成和失活过程的控制,一些细胞色素 P450 参与了这一控制机制。我们之前曾报道过,CYP714B1 和 CYP714B2 编码 GA13-氧化酶,该酶是 GA1 生物合成所必需的,而 CYP714D1 编码 GA16α,17-环氧化酶,它使水稻中非 13-羟基 GA 失活。拟南芥有两个 CYP714 成员,CYP714A1 和 CYP714A2。为了阐明这些基因在 GA 代谢中的可能作用,我们使用酵母表达系统分析了它们重组蛋白的酶活性。我们发现,重组 CYP714A1 蛋白催化 GA12 转化为 16-羧基-GA12(16-羧基-16β,17-二氢 GA12),这是一种以前未被识别的 GA 代谢物。该 GA 产物的生物测定表明,CYP714A1 是拟南芥中的失活酶。这一点通过 CYP714A1 过表达植物表现出的极端 GA 缺乏型矮化表型得到了证实。有趣的是,重组 CYP714A2 蛋白催化贝壳杉烯酸转化为甜菊醇(贝壳杉-13-羟基-17-羧酸)。当 GA12 作为 CYP714A2 的底物时,主要产物是 12α-羟基 GA12(GA111),次要产物是 13-羟基 GA12(GA53)。过表达 CYP714A2 基因的转基因拟南芥植物表现出半矮化。GA 分析表明,非 13-羟基 GAs 的水平,包括 GA4,降低了,而 13-羟基 GAs 的水平,包括 GA1(其活性低于 GA4),增加了在转基因植物中。我们的结果表明,CYP714 家族蛋白通过单双子叶植物 C 和 D 环的各种氧化作用,有助于产生不同的 GA 化合物。