微泡增强聚焦超声非热消融技术,在不影响神经功能的情况下,接近视束。

Nonthermal ablation with microbubble-enhanced focused ultrasound close to the optic tract without affecting nerve function.

机构信息

Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.

出版信息

J Neurosurg. 2013 Nov;119(5):1208-20. doi: 10.3171/2013.8.JNS122387. Epub 2013 Sep 6.

Abstract

OBJECT

Tumors at the skull base are challenging for both resection and radiosurgery given the presence of critical adjacent structures, such as cranial nerves, blood vessels, and brainstem. Magnetic resonance imaging-guided thermal ablation via laser or other methods has been evaluated as a minimally invasive alternative to these techniques in the brain. Focused ultrasound (FUS) offers a noninvasive method of thermal ablation; however, skull heating limits currently available technology to ablation at regions distant from the skull bone. Here, the authors evaluated a method that circumvents this problem by combining the FUS exposures with injected microbubble-based ultrasound contrast agent. These microbubbles concentrate the ultrasound-induced effects on the vasculature, enabling an ablation method that does not cause significant heating of the brain or skull.

METHODS

In 29 rats, a 525-kHz FUS transducer was used to ablate tissue structures at the skull base that were centered on or adjacent to the optic tract or chiasm. Low-intensity, low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes after intravenous injection of an ultrasound contrast agent (Definity, Lantheus Medical Imaging Inc.). Using histological analysis and visual evoked potential (VEP) measurements, the authors determined whether structural or functional damage was induced in the optic tract or chiasm.

RESULTS

Overall, while the sonications produced a well-defined lesion in the gray matter targets, the adjacent tract and chiasm had comparatively little or no damage. No significant changes (p > 0.05) were found in the magnitude or latency of the VEP recordings, either immediately after sonication or at later times up to 4 weeks after sonication, and no delayed effects were evident in the histological features of the optic nerve and retina.

CONCLUSIONS

This technique, which selectively targets the intravascular microbubbles, appears to be a promising method of noninvasively producing sharply demarcated lesions in deep brain structures while preserving function in adjacent nerves. Because of low vascularity--and thus a low microbubble concentration--some large white matter tracts appear to have some natural resistance to this type of ablation compared with gray matter. While future work is needed to develop methods of monitoring the procedure and establishing its safety at deep brain targets, the technique does appear to be a potential solution that allows FUS ablation of deep brain targets while sparing adjacent nerve structures.

摘要

目的

颅底肿瘤由于毗邻颅神经、血管和脑干等重要结构,无论是进行切除还是放射外科手术都极具挑战性。磁共振成像引导下的激光或其他方法热消融已被评估为这些技术在大脑中的一种微创替代方法。聚焦超声(FUS)提供了一种非侵入性的热消融方法;然而,颅骨加热限制了目前可用的技术,使其只能在远离颅骨的区域进行消融。在这里,作者评估了一种通过将 FUS 暴露与注射微泡超声对比剂相结合来规避该问题的方法。这些微泡将超声诱导的作用集中在脉管系统上,从而实现一种不会导致大脑或颅骨明显加热的消融方法。

方法

在 29 只大鼠中,使用 525kHz 的 FUS 换能器在颅底的视神经束或视交叉中心或其附近的组织结构上进行消融。在静脉注射超声对比剂(Definity,Lantheus Medical Imaging Inc.)后,应用低强度、低占空比的超声照射(声处理)5 分钟。通过组织学分析和视觉诱发电位(VEP)测量,作者确定视神经束或视交叉是否发生了结构或功能损伤。

结果

总的来说,虽然声处理在灰质靶标中产生了明确的病变,但相邻的束和视交叉的损伤相对较小或没有。声处理后即刻或 4 周后的任何时间,VEP 记录的幅度或潜伏期均无明显变化(p>0.05),视神经和视网膜的组织学特征也没有显示出延迟效应。

结论

这种技术选择性地靶向血管内的微泡,似乎是一种有前途的方法,可以在不损伤邻近神经的情况下,非侵入性地在深部脑结构中产生明显界限分明的病变。由于血管密度低(因此微泡浓度低),与灰质相比,一些大的白质束似乎对这种类型的消融有一定的自然抵抗力。虽然需要进一步的工作来开发监测程序的方法并确定其在深部脑靶标中的安全性,但该技术似乎是一种潜在的解决方案,可以允许 FUS 消融深部脑靶标,同时保护邻近的神经结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索