Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
Eur J Med Chem. 2013 Nov;69:99-114. doi: 10.1016/j.ejmech.2013.08.015. Epub 2013 Aug 19.
Aromatase is an estrogen biosynthesis enzyme belonging to the cytochrome P450 family that catalyzes the rate-limiting step of converting androgens to estrogens. As it is pertinent toward tumor cell growth promotion, aromatase is a lucrative therapeutic target for breast cancer. In the pursuit of robust aromatase inhibitors, a set of fifty-four 1-substituted mono- and bis-benzonitrile or phenyl analogs of 1,2,3-triazole letrozole were employed in quantitative structure-activity relationship (QSAR) study using multiple linear regression (MLR), artificial neural network (ANN) and support vector machine (SVM). Such QSAR models were developed using a set of descriptors providing coverage of the general characteristics of a molecule encompassing molecular size, flexibility, polarity, solubility, charge and electronic properties. Important physicochemical properties giving rise to good aromatase inhibition were obtained by means of exploring its chemical space as a function of the calculated molecular descriptors. The optimal subset of 3 descriptors (i.e. number of rings, ALogP and HOMO-LUMO) was further used for QSAR model construction. The predicted pIC₅₀ values were in strong correlation with their experimental values displaying correlation coefficient values in the range of 0.72-0.83 for the cross-validated set (QCV) while the external test set (Q(Ext)) afforded values in the range of 0.65-0.66. Insights gained from the present study are anticipated to provide pertinent information contributing to the origins of aromatase inhibitory activity and therefore aid in our on-going quest for aromatase inhibitors with robust properties.
芳香酶是细胞色素 P450 家族中的一种雌激素生物合成酶,它催化将雄激素转化为雌激素的限速步骤。由于它与肿瘤细胞生长促进有关,芳香酶是治疗乳腺癌的一个有前途的治疗靶点。为了寻找强效的芳香酶抑制剂,我们使用了一组 54 种 1-取代的单和双苯腈或 1,2,3-三唑来曲唑的苯基类似物,进行了定量构效关系(QSAR)研究,使用了多元线性回归(MLR)、人工神经网络(ANN)和支持向量机(SVM)。这些 QSAR 模型是使用一组描述符开发的,这些描述符涵盖了分子的一般特征,包括分子大小、灵活性、极性、溶解度、电荷和电子性质。通过探索其化学空间作为计算分子描述符的函数,获得了导致良好芳香酶抑制的重要物理化学性质。最佳的 3 个描述符子集(即环数、ALOGP 和 HOMO-LUMO)进一步用于 QSAR 模型构建。预测的 pIC₅₀值与实验值具有很强的相关性,在交叉验证集(QCV)中显示出 0.72-0.83 的相关系数值,而外部测试集(Q(Ext))的范围为 0.65-0.66。本研究获得的见解有望提供有关芳香酶抑制活性起源的相关信息,从而有助于我们对具有强性质的芳香酶抑制剂的持续探索。