Suppr超能文献

通过近红外光谱和支持向量机使用 C-SVC 和 ν-SVC 对柴油池炼油流进行分类。

Classification of diesel pool refinery streams through near infrared spectroscopy and support vector machines using C-SVC and ν-SVC.

机构信息

Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2014 Jan 3;117:389-96. doi: 10.1016/j.saa.2013.08.018. Epub 2013 Aug 15.

Abstract

The use of near infrared (NIR) spectroscopy combined with chemometric methods have been widely used in petroleum and petrochemical industry and provides suitable methods for process control and quality control. The algorithm support vector machines (SVM) has demonstrated to be a powerful chemometric tool for development of classification models due to its ability to nonlinear modeling and with high generalization capability and these characteristics can be especially important for treating near infrared (NIR) spectroscopy data of complex mixtures such as petroleum refinery streams. In this work, a study on the performance of the support vector machines algorithm for classification was carried out, using C-SVC and ν-SVC, applied to near infrared (NIR) spectroscopy data of different types of streams that make up the diesel pool in a petroleum refinery: light gas oil, heavy gas oil, hydrotreated diesel, kerosene, heavy naphtha and external diesel. In addition to these six streams, the diesel final blend produced in the refinery was added to complete the data set. C-SVC and ν-SVC classification models with 2, 4, 6 and 7 classes were developed for comparison between its results and also for comparison with the soft independent modeling of class analogy (SIMCA) models results. It is demonstrated the superior performance of SVC models especially using ν-SVC for development of classification models for 6 and 7 classes leading to an improvement of sensitivity on validation sample sets of 24% and 15%, respectively, when compared to SIMCA models, providing better identification of chemical compositions of different diesel pool refinery streams.

摘要

近红外(NIR)光谱结合化学计量学方法的应用已广泛应用于石油和石化工业,并为过程控制和质量控制提供了合适的方法。支持向量机(SVM)算法由于其具有非线性建模能力和高泛化能力,已被证明是一种强大的化学计量学工具,可用于开发分类模型,这些特性对于处理石油炼制流等复杂混合物的近红外(NIR)光谱数据尤为重要。在这项工作中,使用 C-SVC 和 ν-SVC 对支持向量机算法的分类性能进行了研究,应用于构成石油炼制厂柴油池的不同类型流的近红外(NIR)光谱数据:轻瓦斯油、重瓦斯油、加氢处理柴油、煤油、重石脑油和外部柴油。除了这六种流之外,还添加了炼油厂生产的最终柴油混合液,以完成数据集。开发了具有 2、4、6 和 7 类的 C-SVC 和 ν-SVC 分类模型,以比较其结果,并与软独立建模分类类比(SIMCA)模型的结果进行比较。结果表明,SVM 模型的性能尤其优异,尤其是在开发 6 类和 7 类分类模型时,使用 ν-SVC 可以分别提高验证样本集的灵敏度 24%和 15%,与 SIMCA 模型相比,这提供了对不同炼油厂柴油池流化学成分的更好识别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验