Suppr超能文献

蜥蜴和 LINEs:选择和人口统计学因素影响绿安乐蜥基因组中 L1 反转录转座子的命运。

Lizards and LINEs: selection and demography affect the fate of L1 retrotransposons in the genome of the green anole (Anolis carolinensis).

机构信息

Biology Department, Queens College, City University of New York, Flushing.

出版信息

Genome Biol Evol. 2013;5(9):1754-68. doi: 10.1093/gbe/evt133.

Abstract

Autonomous retrotransposons lacking long terminal repeats (LTR) account for much of the variation in genome size and structure among vertebrates. Mammalian genomes contain hundreds of thousands of non-LTR retrotransposon copies, mostly resulting from the amplification of a single clade known as L1. The genomes of teleost fish and squamate reptiles contain a much more diverse array of non-LTR retrotransposon families, whereas copy number is relatively low. The majority of non-LTR retrotransposon insertions in nonmammalian vertebrates also appear to be very recent, suggesting strong purifying selection limits the accumulation of non-LTR retrotransposon copies. It is however unclear whether this turnover model, originally proposed in Drosophila, applies to nonmammalian vertebrates. Here, we studied the population dynamics of L1 in the green anole lizard (Anolis carolinensis). We found that although most L1 elements are recent in this genome, truncated insertions accumulate readily, and many are fixed at both the population and species level. In contrast, full-length L1 insertions are found at lower population frequencies, suggesting that the turnover model only applies to longer L1 elements in Anolis. We also found that full-length L1 inserts are more likely to be fixed in populations of small effective size, suggesting that the strength of purifying selection against deleterious alleles is highly dependent on host demographic history. Similar mechanisms seem to be controlling the fate of non-LTR retrotransposons in both Anolis and teleostean fish, which suggests that mammals have considerably diverged from the ancestral vertebrate in terms of how they interact with their intragenomic parasites.

摘要

缺乏长末端重复序列 (LTR) 的自主反转录转座子是脊椎动物基因组大小和结构变异的主要原因。哺乳动物基因组中含有数十万种非 LTR 反转录转座子拷贝,主要源于一个被称为 L1 的单一分支的扩增。鱼类和爬行类动物基因组中含有更多种类的非 LTR 反转录转座子家族,而非拷贝数相对较低。非哺乳类脊椎动物中的大多数非 LTR 反转录转座子插入似乎也非常新,这表明强烈的纯化选择限制了非 LTR 反转录转座子拷贝的积累。然而,不清楚这个最初在果蝇中提出的周转率模型是否适用于非哺乳类脊椎动物。在这里,我们研究了绿鬣蜥(Anolis carolinensis)基因组中 L1 的群体动态。我们发现,尽管这个基因组中的大多数 L1 元件都是近期的,但截短的插入很容易积累,并且许多在种群和物种水平上都是固定的。相比之下,全长 L1 插入在较低的种群频率中发现,这表明周转率模型仅适用于绿鬣蜥中的较长 L1 元件。我们还发现,全长 L1 插入更有可能在有效种群规模较小的种群中固定,这表明针对有害等位基因的纯化选择强度高度依赖于宿主的种群历史。类似的机制似乎控制着非 LTR 反转录转座子在绿鬣蜥和硬骨鱼类中的命运,这表明哺乳动物在与它们的基因组内寄生虫相互作用方面与祖先脊椎动物有很大的分歧。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ba/3787681/cdb976bd1980/evt133f1p.jpg

相似文献

3
Accumulation and rapid decay of non-LTR retrotransposons in the genome of the three-spine stickleback.
Genome Biol Evol. 2012;4(5):687-702. doi: 10.1093/gbe/evs044. Epub 2012 Apr 25.
5
Disentangling the determinants of transposable elements dynamics in vertebrate genomes using empirical evidences and simulations.
PLoS Genet. 2020 Oct 5;16(10):e1009082. doi: 10.1371/journal.pgen.1009082. eCollection 2020 Oct.
6
Non-LTR retrotransposons in fungi.
Funct Integr Genomics. 2009 Feb;9(1):27-42. doi: 10.1007/s10142-008-0093-8. Epub 2008 Aug 2.
7
A co-opted gypsy-type LTR-retrotransposon is conserved in the genomes of humans, sheep, mice, and rats.
Curr Biol. 2003 Sep 2;13(17):1518-23. doi: 10.1016/s0960-9822(03)00618-3.
8
Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates.
J Mol Evol. 2001 Apr;52(4):351-60. doi: 10.1007/s002390010165.
9
Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome.
Genome Res. 2009 Feb;19(2):243-54. doi: 10.1101/gr.083360.108. Epub 2008 Nov 24.

引用本文的文献

6
Do Ty3/Gypsy Transposable Elements Play Preferential Roles in Sex Chromosome Differentiation?
Life (Basel). 2022 Apr 1;12(4):522. doi: 10.3390/life12040522.
7
Reactivation of transposable elements following hybridization in fission yeast.
Genome Res. 2022 Feb;32(2):324-336. doi: 10.1101/gr.276056.121. Epub 2021 Dec 14.
8
Transposable Elements and Stress in Vertebrates: An Overview.
Int J Mol Sci. 2021 Feb 17;22(4):1970. doi: 10.3390/ijms22041970.
9
On the Population Dynamics of Junk: A Review on the Population Genomics of Transposable Elements.
Genes (Basel). 2019 May 30;10(6):419. doi: 10.3390/genes10060419.

本文引用的文献

1
An age-of-allele test of neutrality for transposable element insertions.
Genetics. 2014 Feb;196(2):523-38. doi: 10.1534/genetics.113.158147. Epub 2013 Dec 13.
3
Surfing in tortoises? Empirical signs of genetic structuring owing to range expansion.
Biol Lett. 2013 Apr 3;9(3):20121091. doi: 10.1098/rsbl.2012.1091. Print 2013 Jun 23.
7
Accumulation and rapid decay of non-LTR retrotransposons in the genome of the three-spine stickleback.
Genome Biol Evol. 2012;4(5):687-702. doi: 10.1093/gbe/evs044. Epub 2012 Apr 25.
8
Serial founder effects during range expansion: a spatial analog of genetic drift.
Genetics. 2012 May;191(1):171-81. doi: 10.1534/genetics.112.139022. Epub 2012 Feb 23.
9
Sculpting reproductive circuits: relationships among hormones, morphology and behavior in anole lizards.
Gen Comp Endocrinol. 2012 May 1;176(3):456-60. doi: 10.1016/j.ygcen.2011.12.011. Epub 2011 Dec 19.
10
Repetitive elements may comprise over two-thirds of the human genome.
PLoS Genet. 2011 Dec;7(12):e1002384. doi: 10.1371/journal.pgen.1002384. Epub 2011 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验