Biology Department, Queens College, City University of New York, Flushing.
Genome Biol Evol. 2013;5(9):1754-68. doi: 10.1093/gbe/evt133.
Autonomous retrotransposons lacking long terminal repeats (LTR) account for much of the variation in genome size and structure among vertebrates. Mammalian genomes contain hundreds of thousands of non-LTR retrotransposon copies, mostly resulting from the amplification of a single clade known as L1. The genomes of teleost fish and squamate reptiles contain a much more diverse array of non-LTR retrotransposon families, whereas copy number is relatively low. The majority of non-LTR retrotransposon insertions in nonmammalian vertebrates also appear to be very recent, suggesting strong purifying selection limits the accumulation of non-LTR retrotransposon copies. It is however unclear whether this turnover model, originally proposed in Drosophila, applies to nonmammalian vertebrates. Here, we studied the population dynamics of L1 in the green anole lizard (Anolis carolinensis). We found that although most L1 elements are recent in this genome, truncated insertions accumulate readily, and many are fixed at both the population and species level. In contrast, full-length L1 insertions are found at lower population frequencies, suggesting that the turnover model only applies to longer L1 elements in Anolis. We also found that full-length L1 inserts are more likely to be fixed in populations of small effective size, suggesting that the strength of purifying selection against deleterious alleles is highly dependent on host demographic history. Similar mechanisms seem to be controlling the fate of non-LTR retrotransposons in both Anolis and teleostean fish, which suggests that mammals have considerably diverged from the ancestral vertebrate in terms of how they interact with their intragenomic parasites.
缺乏长末端重复序列 (LTR) 的自主反转录转座子是脊椎动物基因组大小和结构变异的主要原因。哺乳动物基因组中含有数十万种非 LTR 反转录转座子拷贝,主要源于一个被称为 L1 的单一分支的扩增。鱼类和爬行类动物基因组中含有更多种类的非 LTR 反转录转座子家族,而非拷贝数相对较低。非哺乳类脊椎动物中的大多数非 LTR 反转录转座子插入似乎也非常新,这表明强烈的纯化选择限制了非 LTR 反转录转座子拷贝的积累。然而,不清楚这个最初在果蝇中提出的周转率模型是否适用于非哺乳类脊椎动物。在这里,我们研究了绿鬣蜥(Anolis carolinensis)基因组中 L1 的群体动态。我们发现,尽管这个基因组中的大多数 L1 元件都是近期的,但截短的插入很容易积累,并且许多在种群和物种水平上都是固定的。相比之下,全长 L1 插入在较低的种群频率中发现,这表明周转率模型仅适用于绿鬣蜥中的较长 L1 元件。我们还发现,全长 L1 插入更有可能在有效种群规模较小的种群中固定,这表明针对有害等位基因的纯化选择强度高度依赖于宿主的种群历史。类似的机制似乎控制着非 LTR 反转录转座子在绿鬣蜥和硬骨鱼类中的命运,这表明哺乳动物在与它们的基因组内寄生虫相互作用方面与祖先脊椎动物有很大的分歧。