Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA.
Cell Cycle. 2013 Oct 1;12(19):3203-18. doi: 10.4161/cc.26257. Epub 2013 Sep 4.
Fifty years of genetic and molecular experiments have revealed a wealth of molecular interactions involved in the control of cell division. In light of the complexity of this control system, mathematical modeling has proved useful in analyzing biochemical hypotheses that can be tested experimentally. Stochastic modeling has been especially useful in understanding the intrinsic variability of cell cycle events, but stochastic modeling has been hampered by a lack of reliable data on the absolute numbers of mRNA molecules per cell for cell cycle control genes. To fill this void, we used fluorescence in situ hybridization (FISH) to collect single molecule mRNA data for 16 cell cycle regulators in budding yeast, Saccharomyces cerevisiae. From statistical distributions of single-cell mRNA counts, we are able to extract the periodicity, timing, and magnitude of transcript abundance during the cell cycle. We used these parameters to improve a stochastic model of the cell cycle to better reflect the variability of molecular and phenotypic data on cell cycle progression in budding yeast.
五十年来的遗传和分子实验揭示了大量参与细胞分裂控制的分子相互作用。鉴于这个控制系统的复杂性,数学建模已被证明在分析可以通过实验测试的生化假设方面非常有用。随机建模在理解细胞周期事件的固有可变性方面特别有用,但由于缺乏关于细胞周期控制基因每个细胞中 mRNA 分子绝对数量的可靠数据,随机建模受到了阻碍。为了填补这一空白,我们使用荧光原位杂交 (FISH) 为出芽酵母酿酒酵母中的 16 个细胞周期调节剂收集单个分子 mRNA 数据。从单细胞 mRNA 计数的统计分布中,我们能够提取细胞周期过程中转录物丰度的周期性、时间和幅度。我们使用这些参数来改进细胞周期的随机模型,以更好地反映出芽酵母中细胞周期进展的分子和表型数据的可变性。