Suppr超能文献

含删失数据的基于秩的变量选择。

Rank-based variable selection with censored data.

作者信息

Xu Jinfeng, Leng Chenlei, Ying Zhiliang

机构信息

Department of Statistics and Applied Probability, Risk Management Institute, National University of Singapore, 117546 Singapore, Singapore.

出版信息

Stat Comput. 2010 Apr 1;20(2):165-176. doi: 10.1007/s11222-009-9126-y.

Abstract

A rank-based variable selection procedure is developed for the semiparametric accelerated failure time model with censored observations where the penalized likelihood (partial likelihood) method is not directly applicable. The new method penalizes the rank-based Gehan-type loss function with the penalty. To correctly choose the tuning parameters, a novel likelihood-based -type criterion is proposed. Desirable properties of the estimator such as the oracle properties are established through the local quadratic expansion of the Gehan loss function. In particular, our method can be easily implemented by the standard linear programming packages and hence numerically convenient. Extensions to marginal models for multivariate failure time are also considered. The performance of the new procedure is assessed through extensive simulation studies and illustrated with two real examples.

摘要

针对存在删失观测值的半参数加速失效时间模型,开发了一种基于秩的变量选择程序,其中惩罚似然(偏似然)方法不直接适用。新方法用惩罚项对基于秩的Gehan型损失函数进行惩罚。为了正确选择调优参数,提出了一种基于似然的新型准则。通过Gehan损失函数的局部二次展开,建立了估计量的理想性质,如神谕性质。特别地,我们的方法可以很容易地通过标准线性规划软件包实现,因此在数值上很方便。还考虑了对多变量失效时间边际模型的扩展。通过广泛的模拟研究评估了新程序的性能,并用两个实际例子进行了说明。

相似文献

1
Rank-based variable selection with censored data.
Stat Comput. 2010 Apr 1;20(2):165-176. doi: 10.1007/s11222-009-9126-y.
2
Adaptive lasso for the Cox regression with interval censored and possibly left truncated data.
Stat Methods Med Res. 2020 Apr;29(4):1243-1255. doi: 10.1177/0962280219856238. Epub 2019 Jun 16.
3
PENALIZED VARIABLE SELECTION PROCEDURE FOR COX MODELS WITH SEMIPARAMETRIC RELATIVE RISK.
Ann Stat. 2010 Aug 1;38(4):2092-2117. doi: 10.1214/09-AOS780.
4
Simultaneous estimation and variable selection in median regression using Lasso-type penalty.
Ann Inst Stat Math. 2010 Jun 1;62(3):487-514. doi: 10.1007/s10463-008-0184-2.
5
Scalable algorithms for semiparametric accelerated failure time models in high dimensions.
Stat Med. 2022 Mar 15;41(6):933-949. doi: 10.1002/sim.9264. Epub 2022 Jan 11.
6
Penalized variable selection for accelerated failure time models with random effects.
Stat Med. 2019 Feb 28;38(5):878-892. doi: 10.1002/sim.8023. Epub 2018 Nov 8.
7
Empirical Likelihood for Censored Linear Regression and Variable Selection.
Scand Stat Theory Appl. 2015 Sep;42(3):798-812. doi: 10.1111/sjos.12137. Epub 2015 Jan 27.
8
Group variable selection for the Cox model with interval-censored failure time data.
Biometrics. 2023 Dec;79(4):3082-3095. doi: 10.1111/biom.13879. Epub 2023 May 21.
9
A Confidence Region Approach to Tuning for Variable Selection.
J Comput Graph Stat. 2012;21(2):295-314. doi: 10.1080/10618600.2012.679890. Epub 2012 Jun 14.
10
Variable selection for bivariate interval-censored failure time data under linear transformation models.
Int J Biostat. 2022 Jun 3;19(1):61-79. doi: 10.1515/ijb-2021-0031. eCollection 2023 May 1.

引用本文的文献

1
A selective review of robust variable selection with applications in bioinformatics.
Brief Bioinform. 2015 Sep;16(5):873-83. doi: 10.1093/bib/bbu046. Epub 2014 Dec 5.
2
A Tutorial on Rank-based Coefficient Estimation for Censored Data in Small- and Large-Scale Problems.
Stat Comput. 2013 Sep 1;23(5):601-614. doi: 10.1007/s11222-012-9333-9.
3
Semiparametric Accelerated Failure Time Partial Linear Model and Its Application to Breast Cancer.
Comput Stat Data Anal. 2011 Mar 1;55(3):1479-1487. doi: 10.1016/j.csda.2010.10.012.

本文引用的文献

1
Penalized Estimating Functions and Variable Selection in Semiparametric Regression Models.
J Am Stat Assoc. 2008 Jun 1;103(482):672-680. doi: 10.1198/016214508000000184.
2
Tuning parameter selectors for the smoothly clipped absolute deviation method.
Biometrika. 2007 Aug 1;94(3):553-568. doi: 10.1093/biomet/asm053.
3
Regularized estimation for the accelerated failure time model.
Biometrics. 2009 Jun;65(2):394-404. doi: 10.1111/j.1541-0420.2008.01074.x.
4
Variable selection for proportional odds model.
Stat Med. 2007 Sep 10;26(20):3771-81. doi: 10.1002/sim.2833.
6
The lasso method for variable selection in the Cox model.
Stat Med. 1997 Feb 28;16(4):385-95. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验