Tibshirani R
Department of Preventive Medicine and Biostatistics, University of Toronto, Ontario, Canada.
Stat Med. 1997 Feb 28;16(4):385-95. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3.
I propose a new method for variable selection and shrinkage in Cox's proportional hazards model. My proposal minimizes the log partial likelihood subject to the sum of the absolute values of the parameters being bounded by a constant. Because of the nature of this constraint, it shrinks coefficients and produces some coefficients that are exactly zero. As a result it reduces the estimation variance while providing an interpretable final model. The method is a variation of the 'lasso' proposal of Tibshirani, designed for the linear regression context. Simulations indicate that the lasso can be more accurate than stepwise selection in this setting.
我提出了一种在Cox比例风险模型中进行变量选择和收缩的新方法。我的提议是在参数绝对值之和受常数约束的条件下,使对数偏似然最小化。由于这种约束的性质,它会收缩系数并产生一些恰好为零的系数。结果,它在提供一个可解释的最终模型的同时降低了估计方差。该方法是Tibshirani为线性回归背景设计的“套索”提议的一种变体。模拟表明,在这种情况下套索法可能比逐步选择更准确。