Suppr超能文献

用于平滑截断绝对偏差方法的调优参数选择器。

Tuning parameter selectors for the smoothly clipped absolute deviation method.

作者信息

Wang Hansheng, Li Runze, Tsai Chih-Ling

机构信息

Guanghua School of Management, Peking University, Beijing, China, 100871

出版信息

Biometrika. 2007 Aug 1;94(3):553-568. doi: 10.1093/biomet/asm053.

Abstract

The penalised least squares approach with smoothly clipped absolute deviation penalty has been consistently demonstrated to be an attractive regression shrinkage and selection method. It not only automatically and consistently selects the important variables, but also produces estimators which are as efficient as the oracle estimator. However, these attractive features depend on appropriately choosing the tuning parameter. We show that the commonly used the generalised crossvalidation cannot select the tuning parameter satisfactorily, with a nonignorable overfitting effect in the resulting model. In addition, we propose a bic tuning parameter selector, which is shown to be able to identify the true model consistently. Simulation studies are presented to support theoretical findings, and an empirical example is given to illustrate its use in the Female Labor Supply data.

摘要

带有平滑截断绝对偏差惩罚的惩罚最小二乘法一直被证明是一种有吸引力的回归收缩和选择方法。它不仅能自动且一致地选择重要变量,还能产生与神谕估计器一样高效的估计量。然而,这些吸引人的特性依赖于适当选择调谐参数。我们表明,常用的广义交叉验证不能令人满意地选择调谐参数,在所得模型中会产生不可忽视的过拟合效应。此外,我们提出了一种贝叶斯信息准则(BIC)调谐参数选择器,它被证明能够一致地识别真实模型。给出了模拟研究以支持理论结果,并给出了一个实证例子来说明其在女性劳动力供给数据中的应用。

相似文献

1
Tuning parameter selectors for the smoothly clipped absolute deviation method.
Biometrika. 2007 Aug 1;94(3):553-568. doi: 10.1093/biomet/asm053.
2
ESTIMATION AND TESTING FOR PARTIALLY LINEAR SINGLE-INDEX MODELS.
Ann Stat. 2010 Dec 1;38(6):3811-3836. doi: 10.1214/10-AOS835.
3
Regularization Parameter Selections via Generalized Information Criterion.
J Am Stat Assoc. 2010 Mar 1;105(489):312-323. doi: 10.1198/jasa.2009.tm08013.
5
Weighted Wilcoxon-type smoothly clipped absolute deviation method.
Biometrics. 2009 Jun;65(2):564-71. doi: 10.1111/j.1541-0420.2008.01099.x. Epub 2008 Jul 18.
6
Variable selection for case-cohort studies with failure time outcome.
Biometrika. 2016 Sep;103(3):547-562. doi: 10.1093/biomet/asw027. Epub 2016 Aug 10.
7
8
PENALIZED VARIABLE SELECTION PROCEDURE FOR COX MODELS WITH SEMIPARAMETRIC RELATIVE RISK.
Ann Stat. 2010 Aug 1;38(4):2092-2117. doi: 10.1214/09-AOS780.
9
Consistent model identification of varying coefficient quantile regression with BIC tuning parameter selection.
Commun Stat Theory Methods. 2017;46(3):1031-1049. doi: 10.1080/03610926.2015.1010009. Epub 2016 Mar 16.
10
Newton-Raphson Meets Sparsity: Sparse Learning Via a Novel Penalty and a Fast Solver.
IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):12057-12067. doi: 10.1109/TNNLS.2023.3251748. Epub 2024 Sep 3.

引用本文的文献

1
Heterogeneous Functional Regression for Subgroup Analysis.
J Comput Graph Stat. 2024 Dec 20. doi: 10.1080/10618600.2024.2414113.
2
High-Dimensional Multiresponse Partially Functional Linear Regression.
Stat Med. 2025 Jun;44(13-14):e70140. doi: 10.1002/sim.70140.
3
Variable Selection for Progressive Multistate Processes Under Intermittent Observation.
Stat Med. 2025 Mar 15;44(6):e70023. doi: 10.1002/sim.70023.
4
Individualized Time-Varying Nonparametric Model With an Application in Mobile Health.
Stat Med. 2025 Feb 28;44(5):e70005. doi: 10.1002/sim.70005.
7
Robust and efficient subsampling algorithms for massive data logistic regression.
J Appl Stat. 2023 Apr 26;51(8):1427-1445. doi: 10.1080/02664763.2023.2205611. eCollection 2024.
8
Model Selection for Exponential Power Mixture Regression Models.
Entropy (Basel). 2024 May 15;26(5):422. doi: 10.3390/e26050422.
9
Methods for online calibration of Q-matrix and item parameters for polytomous responses in cognitive diagnostic computerized adaptive testing.
Behav Res Methods. 2024 Oct;56(7):6792-6811. doi: 10.3758/s13428-024-02392-6. Epub 2024 Apr 30.
10
On variable selection in a semiparametric AFT mixture cure model.
Lifetime Data Anal. 2024 Apr;30(2):472-500. doi: 10.1007/s10985-024-09619-w. Epub 2024 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验