Suppr超能文献

新型隐球菌中香叶基香叶基转移酶-I 酶的底物特异性受限:对毒力的影响。

Restricted substrate specificity for the geranylgeranyltransferase-I enzyme in Cryptococcus neoformans: implications for virulence.

作者信息

Selvig Kyla, Ballou Elizabeth R, Nichols Connie B, Alspaugh J Andrew

机构信息

Departments of Medicine, Molecular Genetics, and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA.

出版信息

Eukaryot Cell. 2013 Nov;12(11):1462-71. doi: 10.1128/EC.00193-13. Epub 2013 Sep 6.

Abstract

Proper cellular localization is required for the function of many proteins. The CaaX prenyltransferases (where CaaX indicates a cysteine followed by two aliphatic amino acids and a variable amino acid) direct the subcellular localization of a large group of proteins by catalyzing the attachment of hydrophobic isoprenoid moieties onto C-terminal CaaX motifs, thus facilitating membrane association. This group of enzymes includes farnesyltransferase (Ftase) and geranylgeranyltransferase-I (Ggtase-1). Classically, the variable (X) amino acid determines whether a protein will be an Ftase or Ggtase-I substrate, with Ggtase-I substrates often containing CaaL motifs. In this study, we identify the gene encoding the β subunit of Ggtase-I (CDC43) and demonstrate that Ggtase-mediated activity is not essential. However, Cryptococcus neoformans CDC43 is important for thermotolerance, morphogenesis, and virulence. We find that Ggtase-I function is required for full membrane localization of Rho10 and the two Cdc42 paralogs (Cdc42 and Cdc420). Interestingly, the related Rac and Ras proteins are not mislocalized in the cdc43Δ mutant even though they contain similar CaaL motifs. Additionally, the membrane localization of each of these GTPases is dependent on the prenylation of the CaaX cysteine. These results indicate that C. neoformans CaaX prenyltransferases may recognize their substrates in a unique manner from existing models of prenyltransferase specificity. It also suggests that the C. neoformans Ftase, which has been shown to be more important for C. neoformans proliferation and viability, may be the primary prenyltransferase for proteins that are typically geranylgeranylated in other species.

摘要

许多蛋白质的功能需要正确的细胞定位。CaaX异戊二烯基转移酶(其中CaaX表示一个半胱氨酸,后面跟着两个脂肪族氨基酸和一个可变氨基酸)通过催化疏水类异戊二烯部分连接到C末端CaaX基序上,指导一大类蛋白质的亚细胞定位,从而促进膜结合。这组酶包括法尼基转移酶(Ftase)和香叶基香叶基转移酶-I(Ggtase-1)。传统上,可变(X)氨基酸决定一种蛋白质是Ftase还是Ggtase-I的底物,Ggtase-I的底物通常含有CaaL基序。在本研究中,我们鉴定了编码Ggtase-Iβ亚基的基因(CDC43),并证明Ggtase介导的活性并非必需。然而,新型隐球菌CDC43对耐热性、形态发生和毒力很重要。我们发现Ggtase-I的功能对于Rho10和两个Cdc42旁系同源物(Cdc42和Cdc420)的完全膜定位是必需的。有趣的是,相关的Rac和Ras蛋白在cdc43Δ突变体中并没有错误定位,尽管它们含有相似的CaaL基序。此外,这些GTP酶中每一种的膜定位都依赖于CaaX半胱氨酸的异戊二烯化。这些结果表明,新型隐球菌CaaX异戊二烯基转移酶可能以一种与现有异戊二烯基转移酶特异性模型不同的独特方式识别其底物。这也表明,已被证明对新型隐球菌增殖和生存能力更重要的新型隐球菌Ftase,可能是其他物种中通常进行香叶基香叶基化的蛋白质的主要异戊二烯基转移酶。

相似文献

5
Sequence dependence of protein isoprenylation.
J Biol Chem. 1991 Aug 5;266(22):14603-10.
7
Conversion of protein farnesyltransferase to a geranylgeranyltransferase.
Biochemistry. 2006 Aug 15;45(32):9746-55. doi: 10.1021/bi060295e.
9
Purification of geranylgeranyltransferase I from Candida albicans and cloning of the CaRAM2 and CaCDC43 genes encoding its subunits.
Microbiology (Reading). 1999 May;145 ( Pt 5):1123-1135. doi: 10.1099/13500872-145-5-1123.

引用本文的文献

3
Roles for Stress Response and Cell Wall Biosynthesis Pathways in Caspofungin Tolerance in .
Genetics. 2019 Sep;213(1):213-227. doi: 10.1534/genetics.119.302290. Epub 2019 Jul 2.
4
Differential requirements of protein geranylgeranylation for the virulence of human pathogenic fungi.
Virulence. 2019 Dec;10(1):511-526. doi: 10.1080/21505594.2019.1620063.
5
Efficient farnesylation of an extended C-terminal C() sequence motif expands the scope of the prenylated proteome.
J Biol Chem. 2018 Feb 23;293(8):2770-2785. doi: 10.1074/jbc.M117.805770. Epub 2017 Dec 27.
6
Nutritional Requirements and Their Importance for Virulence of Pathogenic Cryptococcus Species.
Microorganisms. 2017 Sep 30;5(4):65. doi: 10.3390/microorganisms5040065.
7
Tracing Genetic Exchange and Biogeography of var. at the Global Population Level.
Genetics. 2017 Sep;207(1):327-346. doi: 10.1534/genetics.117.203836. Epub 2017 Jul 5.
8
Targeting protein localization for anti-infective therapy.
Virulence. 2017 Oct 3;8(7):1105-1107. doi: 10.1080/21505594.2017.1342921. Epub 2017 Jun 28.
9
Relative Contributions of Prenylation and Postprenylation Processing in Cryptococcus neoformans Pathogenesis.
mSphere. 2016 Mar 30;1(2). doi: 10.1128/mSphere.00084-15. eCollection 2016 Mar-Apr.
10
All about that fat: Lipid modification of proteins in Cryptococcus neoformans.
J Microbiol. 2016 Mar;54(3):212-22. doi: 10.1007/s12275-016-5626-6. Epub 2016 Feb 27.

本文引用的文献

1
Two Rac paralogs regulate polarized growth in the human fungal pathogen Cryptococcus neoformans.
Fungal Genet Biol. 2013 Aug;57:58-75. doi: 10.1016/j.fgb.2013.05.006. Epub 2013 Jun 5.
2
Role of Cryptococcus neoformans Rho1 GTPases in the PKC1 signaling pathway in response to thermal stress.
Eukaryot Cell. 2013 Jan;12(1):118-31. doi: 10.1128/EC.05305-11. Epub 2012 Nov 16.
3
Cryptococcus interactions with macrophages: evasion and manipulation of the phagosome by a fungal pathogen.
Cell Microbiol. 2013 Mar;15(3):403-11. doi: 10.1111/cmi.12067. Epub 2012 Nov 30.
6
Roles of Ras1 membrane localization during Candida albicans hyphal growth and farnesol response.
Eukaryot Cell. 2011 Nov;10(11):1473-84. doi: 10.1128/EC.05153-11. Epub 2011 Sep 9.
8
Understanding and exploiting protein prenyltransferases.
Chembiochem. 2010 Jun 14;11(9):1194-201. doi: 10.1002/cbic.200900727.
9
Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule.
PLoS Pathog. 2010 Feb 19;6(2):e1000776. doi: 10.1371/journal.ppat.1000776.
10
Two CDC42 paralogues modulate Cryptococcus neoformans thermotolerance and morphogenesis under host physiological conditions.
Mol Microbiol. 2010 Feb;75(3):763-80. doi: 10.1111/j.1365-2958.2009.07019.x. Epub 2009 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验