Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY.
Circulation. 2013 Oct 15;128(16):1758-69. doi: 10.1161/CIRCULATIONAHA.113.002885. Epub 2013 Sep 6.
Clock is a key transcription factor that positively controls circadian regulation. However, its role in plasma cholesterol homeostasis and atherosclerosis has not been studied.
We show for the first time that dominant-negative Clock mutant protein (Clock(Δ19/Δ19)) enhances plasma cholesterol and atherosclerosis in 3 different mouse models. Detailed analyses revealed that Clk(Δ19/Δ19)Apoe(-/-) mice display hypercholesterolemia resulting from the accumulation of apolipoprotein B48-containing cholesteryl ester-rich lipoproteins. Physiological studies showed that enhanced cholesterol absorption by the intestine contributes to hypercholesterolemia. Molecular studies indicated that the expression of Niemann Pick C1 Like 1, Acyl-CoA:Cholesterol acyltransferase 1, and microsomal triglyceride transfer protein in the intestines of Clk(Δ19/Δ19)Apoe(-/-) mice was high and that enterocytes assembled and secreted more chylomicrons. Furthermore, we identified macrophage dysfunction as another potential cause of increased atherosclerosis in Clk(Δ19/Δ19)Apoe(-/-) mice. Macrophages from Clk(Δ19/Δ19)Apoe(-/-) mice expressed higher levels of scavenger receptors and took up more modified lipoproteins compared with Apoe(-/-) mice, but they expressed low levels of ATP binding casette protein family A member 1 and were defective in cholesterol efflux. Molecular studies revealed that Clock regulates ATP binding casette protein family A member 1 expression in macrophages by modulating upstream transcription factor 2 expression.
Clock(Δ19/Δ19) protein enhances atherosclerosis by increasing intestinal cholesterol absorption, augmenting uptake of modified lipoproteins by macrophages, and reducing cholesterol efflux from macrophages. These studies establish that circadian Clock activity is crucial in maintaining low plasma cholesterol levels and in reducing atherogenesis in mice.
Clock 是一种关键的转录因子,正向调控昼夜节律。然而,其在血浆胆固醇稳态和动脉粥样硬化中的作用尚未被研究。
我们首次表明,显性负性 Clock 突变蛋白(Clock(Δ19/Δ19))增强了 3 种不同小鼠模型中的血浆胆固醇和动脉粥样硬化。详细分析表明,Clk(Δ19/Δ19)Apoe(-/-)小鼠表现出高胆固醇血症,原因是载脂蛋白 B48 含有胆固醇酯丰富的脂蛋白积聚。生理研究表明,肠道增强的胆固醇吸收导致高胆固醇血症。分子研究表明,Clk(Δ19/Δ19)Apoe(-/-)小鼠肠道中尼曼匹克 C1 样 1、酰基辅酶 A:胆固醇酰基转移酶 1 和微粒体甘油三酯转移蛋白的表达较高,肠上皮细胞组装并分泌更多的乳糜微粒。此外,我们发现巨噬细胞功能障碍是 Clk(Δ19/Δ19)Apoe(-/-)小鼠动脉粥样硬化增加的另一个潜在原因。与 Apoe(-/-)小鼠相比,Clk(Δ19/Δ19)Apoe(-/-)小鼠的巨噬细胞表达更高水平的清道夫受体,摄取更多修饰的脂蛋白,但它们表达低水平的 ATP 结合盒蛋白家族 A 成员 1,并且在胆固醇外排方面存在缺陷。分子研究表明,Clock 通过调节上游转录因子 2 的表达来调节巨噬细胞中 ATP 结合盒蛋白家族 A 成员 1 的表达。
Clock(Δ19/Δ19)蛋白通过增加肠道胆固醇吸收、增加巨噬细胞对修饰脂蛋白的摄取以及减少巨噬细胞中胆固醇的流出,增强动脉粥样硬化。这些研究确立了昼夜节律 Clock 活性在维持低血浆胆固醇水平和减少小鼠动脉粥样硬化形成中的重要性。