Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Faraday Discuss. 2013;162:281-92. doi: 10.1039/c3fd20129e.
The reaction mechanism for CO oxidation by isolated Rh atoms stabilized on CeO2(111), CeO2(110) and CeO2(100) surfaces is investigated by a combination of Density Functional Theory and kinetic Monte Carlo calculations. On Rh/ CeO2(111), one adsorbed CO molecule on Rh was found to form a stable intermediate structure with surface O. The reaction cycle cannot be closed because of the strong adsorption of the CO2 complex. The presence of a second adsorbed CO significantly decreases the desorption energy, thus opening a possible reaction path. Formation of the oxygen vacancy is accompanied by reduction of surface cerium. On Rh/CeO2(110), adsorbed CO can easily react with a ceria surface O atom due to the lower Ce-O bond energy. Since surface O atom migration is much more facile on Rh/CeO2(110) than on Rh/CeO2(111), CO2 desorption is also more easy for the former surface. Molecular oxygen will adsorb on the resulting vacancy. After desorption of the second CO2 product molecule by reaction of adsorbed CO with another surface O atom, the adsorbed oxygen molecule migrates spontaneously to the vacancy site and dissociates with negligible barrier. The role of molecular oxygen is to heal the oxygen vacancy rather than being involved in a direct reaction with adsorbed CO. The Rh/ CeO2(100) model was found to be inactive for CO oxidation, mainly because of the geometric constraints for the adsorbed CO molecule to react with one of the surface O atoms, despite the low Ce-O bond energy of the CeO2(100) surface. The main reason is the large distance between the C of adsorbed CO and the ceria O surface atoms. The particularities of the CO oxidation mechanism for isolated Rh atoms on these ceria surfaces are in agreement with the experimental activity trends.
采用密度泛函理论和动力学蒙特卡罗计算相结合的方法,研究了孤立 Rh 原子在 CeO2(111)、CeO2(110)和 CeO2(100)表面上催化 CO 氧化的反应机理。在 Rh/CeO2(111)上,一个吸附在 Rh 上的 CO 分子与表面 O 形成了一个稳定的中间结构。由于 CO2 络合物的强吸附作用,反应循环无法闭合。第二个吸附 CO 的存在显著降低了脱附能,从而开辟了可能的反应途径。氧空位的形成伴随着表面铈的还原。在 Rh/CeO2(110)上,由于 Ce-O 键能较低,吸附的 CO 很容易与 CeO2 表面 O 原子反应。由于 Rh/CeO2(110)表面上的 O 原子迁移比 Rh/CeO2(111)表面上更容易,因此前者的 CO2 脱附也更容易。分子氧将吸附在生成的空位上。第二个 CO2 产物分子通过吸附 CO 与另一个表面 O 原子反应脱附后,吸附的氧分子自发迁移到空位处并以可忽略的势垒解离。分子氧的作用是修复氧空位,而不是与吸附的 CO 直接反应。Rh/CeO2(100)模型被发现对 CO 氧化没有活性,主要是因为吸附 CO 分子与表面 O 原子之一反应的几何限制,尽管 CeO2(100)表面的 Ce-O 键能较低。主要原因是吸附 CO 的 C 与 CeO2 表面 O 原子之间的距离较大。孤立 Rh 原子在这些 CeO2 表面上催化 CO 氧化的反应机理的特殊性与实验活性趋势一致。