Department of Physics and Materials Science, City University of Hong Kong , 83 Tat Chee Avenue, Kowloon, Hong Kong.
ACS Nano. 2013 Oct 22;7(10):9138-46. doi: 10.1021/nn403767j. Epub 2013 Sep 9.
Reliable control in the crystal quality of synthesized III-V nanowires (NWs) is particularly important to manipulate their corresponding electronic transport properties for technological applications. In this report, a "two-step" growth process is adopted to achieve single-crystalline GaAs NWs, where an initial high-temperature nucleation process is employed to ensure the formation of high Ga supersaturated Au7Ga3 and Au2Ga alloy seeds, instead of the low Ga supersaturated Au7Ga2 seeds observed in the conventional "single-step" growth. These two-step NWs are long (>60 μm) and thick (>80 nm) with the minimal defect concentrations and uniform growth orientations. Importantly, these NWs exhibit p-type conductivity as compared to the single-step grown n-type NWs for the same diameter range. This NW conductivity difference (p- versus n-channel) is shown to originate from the donor-like crystal defects, such as As precipitates, induced by the low Ga supersaturated multicrystalline Au7Ga2 alloy seeds. Then the well-controlled crystal quality for desired electronic properties is further explored in the application of large-scale p-type GaAs NW parallel array FETs as well as the integration of both p- and n-type GaAs NWs into CMOS inverters. All these illustrate the successful control of NW crystal defects and corresponding electronic transport properties via the manipulation of Ga supersaturation in the catalytic alloy tips with different preparation methods. The understanding of this relationship between NW crystal quality and electronic transport properties is critical and preferential to the future development of nanoelectronic materials, circuit design, and fabrication.
可靠地控制合成 III-V 纳米线(NWs)的晶体质量对于操纵其相应的电子输运性质以实现技术应用尤为重要。在本报告中,采用“两步”生长工艺来实现单晶 GaAs NWs,其中采用初始高温成核过程来确保形成高 Ga 过饱和度的 Au7Ga3 和 Au2Ga 合金种子,而不是在常规“一步”生长中观察到的低 Ga 过饱和度的 Au7Ga2 种子。这些两步法 NW 又长(>60μm)又粗(>80nm),具有最小的缺陷浓度和均匀的生长方向。重要的是,与相同直径范围内的单步生长的 n 型 NW 相比,这些 NW 表现出 p 型电导率。这种 NW 电导率差异(p 型与 n 型通道)源自于由低 Ga 过饱和度多晶 Au7Ga2 合金种子引起的施主型晶体缺陷,例如 As 沉淀物。然后,通过控制具有不同制备方法的催化合金尖端中的 Ga 过饱和度,进一步探索了所需电子性质的大尺寸 p 型 GaAs NW 平行阵列 FET 以及 p 型和 n 型 GaAs NW 的集成。所有这些都说明了通过操纵 NW 晶体缺陷和相应的电子输运性质来成功控制 NW 晶体质量,这对于纳米电子材料、电路设计和制造的未来发展至关重要和优先考虑。