Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
ACS Nano. 2013 Jan 22;7(1):804-10. doi: 10.1021/nn305289w. Epub 2012 Dec 17.
In recent years, In(2)O(3) nanowires (NWs) have been widely explored in many technological areas due to their excellent electrical and optical properties; however, most of these devices are based on In(2)O(3) NW field-effect transistors (FETs) operating in the depletion mode, which induces relatively higher power consumption and fancier circuit integration design. Here, n-type enhancement-mode In(2)O(3) NW FETs are successfully fabricated by doping different metal elements (Mg, Al, and Ga) in the NW channels. Importantly, the resulting threshold voltage can be effectively modulated through varying the metal (Mg, Ga, and Al) content in the NWs. A series of scaling effects in the mobility, transconductance, threshold voltage, and source-drain current with respect to the device channel length are also observed. Specifically, a small gate delay time (0.01 ns) and high on-current density (0.9 mA/μm) are obtained at 300 nm channel length. Furthermore, Mg-doped In(2)O(3) NWs are then employed to fabricate NW parallel array FETs with a high saturation current (0.5 mA), on/off ratio (>10(9)), and field-effect mobility (110 cm(2)/V·s), while the subthreshold slope and threshold voltage do not show any significant changes. All of these results indicate the great potency for metal-doped In(2)O(3) NWs used in the low-power, high-performance thin-film transistors.
近年来,由于其优异的电学和光学性能,In(2)O(3)纳米线(NWs)在许多技术领域得到了广泛的探索;然而,这些器件大多数都是基于工作在耗尽模式的 In(2)O(3)NW 场效应晶体管(FET),这会导致相对较高的功耗和更复杂的电路集成设计。在这里,通过在 NW 通道中掺杂不同的金属元素(Mg、Al 和 Ga),成功制备出了 n 型增强型 In(2)O(3)NW FET。重要的是,通过改变 NW 中的金属(Mg、Ga 和 Al)含量,可以有效地调节得到的阈值电压。还观察到了迁移率、跨导、阈值电压和源漏电流随器件沟道长度的一系列缩放效应。具体来说,在 300nm 沟道长度下,获得了 0.01ns 的小栅极延迟时间和 0.9mA/μm 的高导通电流密度。此外,还使用 Mg 掺杂的 In(2)O(3)NW 来制备具有高饱和电流(0.5mA)、高开关比(>10(9))和场效应迁移率(110cm(2)/V·s)的 NW 平行阵列 FET,而亚阈值斜率和阈值电压没有明显变化。所有这些结果表明,金属掺杂的 In(2)O(3)NW 在低功耗、高性能薄膜晶体管中有很大的潜力。