Department of Geology & Planetary Science, 4107 O'Hara Street, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
Rapid Commun Mass Spectrom. 2013 Oct 30;27(20):2239-46. doi: 10.1002/rcm.6679.
Ammonia (NH3) emissions are a substantial source of nitrogen pollution to sensitive terrestrial, aquatic, and marine ecosystems and dependable quantification of NH3 sources is of growing importance due to recently observed increases in ammonium (NH4(+)) deposition rates. While determination of the nitrogen isotopic composition of NH3 (δ(15)N-NH3) can aid in the quantification of NH3 emission sources, existing methods have precluded a comprehensive assessment of δ(15)N-NH3 values from major emission sources.
We report an approach for the δ(15)N-NH4(+) analysis of low concentration NH4(+) samples that couples the bromate oxidation of NH4(+) to NO2(-) and the microbial denitrifier method for δ(15)N-NO2(-) analysis. This approach reduces the required sample mass by 50-fold relative to standard elemental analysis (EA) procedures, is capable of high throughput, and eliminates toxic chemicals used in a prior method for the analysis of low concentration samples. Using this approach, we report a comprehensive inventory of δ(15)N-NH3 values from major emission sources (including livestock operations, marine sources, vehicles, fertilized cornfields) collected using passive sampling devices.
The δ(15)N-NH4(+) analysis approach developed has a standard deviation of ±0.7‰ and was used to analyze passively collected NH3 emissions with a wide range of ambient NH3 concentrations (0.2 to 165.6 µg/m(3)). The δ(15)N-NH3 values reveal that the NH3 emitted from volatilized livestock waste and fertilizer has relatively low δ(15)N values (-56 to -23‰), allowing it to be differentiated from NH3 emitted from fossil fuel sources that are characterized by relatively high δ(15)N values (-15 to +2‰).
The isotopic source signatures presented in this emission inventory can be used as an additional tool in identifying NH3 emission sources and tracing their transport across localized landscapes and regions. The insight into the transport of NH3 emissions provided by isotopic investigation is an important step in devising strategies to reduce future NH3 emissions, a mounting concern for air quality scientists, epidemiologists, and policy-makers.
氨(NH3)排放是对敏感的陆地、水生和海洋生态系统造成氮污染的一个重要来源,由于最近观察到铵(NH4(+))沉积速率增加,因此可靠地量化 NH3 来源变得越来越重要。虽然测定 NH3 的氮同位素组成(δ(15)N-NH3)有助于量化 NH3 排放源,但现有的方法排除了对主要排放源的 δ(15)N-NH3 值的全面评估。
我们报告了一种用于低浓度 NH4(+)样品的 δ(15)N-NH4(+)分析的方法,该方法将溴酸盐氧化 NH4(+)与 NO2(-)结合,并采用微生物反硝化方法分析 δ(15)N-NO2(-)。与标准元素分析(EA)程序相比,这种方法将所需的样品质量减少了 50 倍,具有高通量的能力,并消除了先前用于分析低浓度样品的有毒化学物质。使用这种方法,我们报告了使用被动采样装置从主要排放源(包括牲畜养殖场、海洋源、车辆、施肥的玉米地)收集的 δ(15)N-NH3 值的综合清单。
开发的 δ(15)N-NH4(+)分析方法的标准偏差为±0.7‰,并用于分析具有广泛环境 NH3 浓度(0.2 至 165.6 µg/m3)的被动收集的 NH3 排放。δ(15)N-NH3 值表明,从挥发的牲畜废物和肥料中排放的 NH3 具有相对较低的 δ(15)N 值(-56 至-23‰),这使其能够与以相对较高的 δ(15)N 值(-15 至+2‰)为特征的化石燃料来源排放的 NH3 区分开来。
本排放清单中呈现的同位素源特征可作为识别 NH3 排放源并追踪其在局部景观和区域内传输的附加工具。通过同位素研究提供的对 NH3 排放物传输的了解是制定减少未来 NH3 排放策略的重要一步,这是空气质量科学家、流行病学家和政策制定者日益关注的问题。