Suppr超能文献

当显变量完全缺失时,研究潜在变量在不同总体间的因素不变性。

Investigating Factorial Invariance of Latent Variables Across Populations When Manifest Variables Are Missing Completely.

作者信息

Widaman Keith F, Grimm Kevin J, Early Dawnté R, Robins Richard W, Conger Rand D

机构信息

University of California, Davis.

出版信息

Struct Equ Modeling. 2013 Jul 1;20(3):384-408. doi: 10.1080/10705511.2013.797819.

Abstract

Difficulties arise in multiple-group evaluations of factorial invariance if particular manifest variables are missing completely in certain groups. Ad hoc analytic alternatives can be used in such situations (e.g., deleting manifest variables), but some common approaches, such as multiple imputation, are not viable. At least 3 solutions to this problem are viable: analyzing differing sets of variables across groups, using pattern mixture approaches, and a new method using random number generation. The latter solution, proposed in this article, is to generate pseudo-random normal deviates for all observations for manifest variables that are missing completely in a given sample and then to specify multiple-group models in a way that respects the random nature of these values. An empirical example is presented in detail comparing the 3 approaches. The proposed solution can enable quantitative comparisons at the latent variable level between groups using programs that require the same number of manifest variables in each group.

摘要

如果特定的显变量在某些组中完全缺失,那么在因子不变性的多组评估中就会出现困难。在这种情况下,可以使用特殊的分析方法(例如,删除显变量),但一些常见的方法,如多重填补,是不可行的。这个问题至少有3种可行的解决方案:分析不同组的变量集、使用模式混合方法以及一种使用随机数生成的新方法。本文提出的后一种解决方案是,为给定样本中完全缺失的显变量的所有观测值生成伪随机正态偏差,然后以尊重这些值的随机性质的方式指定多组模型。详细给出了一个实证例子,比较了这3种方法。所提出的解决方案可以使用要求每组中显变量数量相同的程序,在潜变量水平上对组间进行定量比较。

相似文献

1
Investigating Factorial Invariance of Latent Variables Across Populations When Manifest Variables Are Missing Completely.
Struct Equ Modeling. 2013 Jul 1;20(3):384-408. doi: 10.1080/10705511.2013.797819.
2
An essay on measurement and factorial invariance.
Med Care. 2006 Nov;44(11 Suppl 3):S69-77. doi: 10.1097/01.mlr.0000245438.73837.89.
3
Factorial Invariance within Longitudinal Structural Equation Models: Measuring the Same Construct across Time.
Child Dev Perspect. 2010 Apr 1;4(1):10-18. doi: 10.1111/j.1750-8606.2009.00110.x.
4
Factorial Invariance and The Specification of Second-Order Latent Growth Models.
Methodology (Gott). 2008;4(1):22-36. doi: 10.1027/1614-2241.4.1.22.
5
Factorial invariance in multilevel confirmatory factor analysis.
Br J Math Stat Psychol. 2014 Feb;67(1):172-94. doi: 10.1111/bmsp.12014. Epub 2013 May 18.
6
Testing strong factorial invariance using three-level structural equation modeling.
Front Psychol. 2014 Jul 25;5:745. doi: 10.3389/fpsyg.2014.00745. eCollection 2014.
7
Relating Measurement Invariance, Cross-Level Invariance, and Multilevel Reliability.
Front Psychol. 2017 Oct 10;8:1640. doi: 10.3389/fpsyg.2017.01640. eCollection 2017.
8
[Multiple imputation of missing at random data: General points and presentation of a Monte-Carlo method].
Rev Epidemiol Sante Publique. 2009 Oct;57(5):361-72. doi: 10.1016/j.respe.2009.04.011. Epub 2009 Aug 11.
9
The Impact of Partial Factorial Invariance on Cross-Group Comparisons.
Assessment. 2019 Oct;26(7):1217-1233. doi: 10.1177/1073191117711020. Epub 2017 Jun 9.
10
Evaluating Factorial Invariance: An Interval Estimation Approach Using Bayesian Structural Equation Modeling.
Multivariate Behav Res. 2019 Mar-Apr;54(2):224-245. doi: 10.1080/00273171.2018.1514484. Epub 2018 Dec 20.

引用本文的文献

1
Student Behavior Ratings and Response to Tier 1 Reading Intervention: Which Students Do Not Benefit?
J Res Educ Eff. 2024;17(3):491-512. doi: 10.1080/19345747.2023.2194894. Epub 2023 Apr 10.
3
Assessing Measurement Invariance Across Multiple Groups: When Is Fit Good Enough?
Educ Psychol Meas. 2022 Jun;82(3):482-505. doi: 10.1177/00131644211023567. Epub 2021 Jun 16.
4
Data Integration Approaches to Longitudinal Growth Modeling.
Educ Psychol Meas. 2017 Dec;77(6):971-989. doi: 10.1177/0013164416664117. Epub 2016 Aug 22.
5
Two-Part Predictors in Regression Models.
Multivariate Behav Res. 2017 Sep-Oct;52(5):551-561. doi: 10.1080/00273171.2017.1333404. Epub 2017 Jun 16.
7
A Moderated Nonlinear Factor Model for the Development of Commensurate Measures in Integrative Data Analysis.
Multivariate Behav Res. 2014 Jun;49(3):214-231. doi: 10.1080/00273171.2014.889594.

本文引用的文献

3
Economic stress, parenting, and child adjustment in Mexican American and European American families.
Child Dev. 2004 Nov-Dec;75(6):1632-56. doi: 10.1111/j.1467-8624.2004.00807.x.
4
Missing data techniques for structural equation modeling.
J Abnorm Psychol. 2003 Nov;112(4):545-57. doi: 10.1037/0021-843X.112.4.545.
5
On specifying the null model for incremental fit indices in structural equation modeling.
Psychol Methods. 2003 Mar;8(1):16-37. doi: 10.1037/1082-989x.8.1.16.
7
Tripartite model of anxiety and depression: psychometric evidence and taxonomic implications.
J Abnorm Psychol. 1991 Aug;100(3):316-36. doi: 10.1037//0021-843x.100.3.316.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验