Suppr超能文献

阶乘不变性与二阶潜在增长模型的设定

Factorial Invariance and The Specification of Second-Order Latent Growth Models.

作者信息

Ferrer Emilio, Balluerka Nekane, Widaman Keith F

机构信息

Department of Psychology, University of California, Davis.

出版信息

Methodology (Gott). 2008;4(1):22-36. doi: 10.1027/1614-2241.4.1.22.

Abstract

Latent growth modeling has been a topic of intense interest during the past two decades. Most theoretical and applied work has employed first-order growth models, in which a single manifest variable serves as indicator of trait level at each time of measurement. In the current paper, we concentrate on issues regarding second-order growth models, which have multiple indicators at each time of measurement. With multiple indicators, tests of factorial invariance of parameters across times of measurement can be tested. We conduct such tests using two sets of data, which differ in the extent to which factorial invariance holds, and evaluate longitudinal confirmatory factor, latent growth curve, and latent difference score models. We demonstrate that, if factorial invariance fails to hold, choice of indicator used to identify the latent variable can have substantial influences on the characterization of patterns of growth, strong enough to alter conclusions about growth. We also discuss matters related to the scaling of growth factors and conclude with recommendations for practice and for future research.

摘要

在过去二十年中,潜在增长模型一直是一个备受关注的话题。大多数理论和应用研究都采用一阶增长模型,其中单一的显性变量作为每次测量时特质水平的指标。在本文中,我们关注二阶增长模型的相关问题,该模型在每次测量时有多个指标。有了多个指标,就可以检验跨测量时间的参数因子不变性。我们使用两组数据进行此类检验,这两组数据在因子不变性成立的程度上有所不同,并评估纵向验证性因子、潜在增长曲线和潜在差异得分模型。我们证明,如果因子不变性不成立,用于识别潜在变量的指标选择可能会对增长模式的表征产生重大影响,其影响程度足以改变关于增长的结论。我们还讨论了与增长因子缩放相关的问题,并以对实践和未来研究的建议作为结论。

相似文献

1
Factorial Invariance and The Specification of Second-Order Latent Growth Models.
Methodology (Gott). 2008;4(1):22-36. doi: 10.1027/1614-2241.4.1.22.
2
Factorial Invariance within Longitudinal Structural Equation Models: Measuring the Same Construct across Time.
Child Dev Perspect. 2010 Apr 1;4(1):10-18. doi: 10.1111/j.1750-8606.2009.00110.x.
3
An essay on measurement and factorial invariance.
Med Care. 2006 Nov;44(11 Suppl 3):S69-77. doi: 10.1097/01.mlr.0000245438.73837.89.
4
Adjusting for Measurement Noninvariance with Alignment in Growth Modeling.
Multivariate Behav Res. 2023 Jan-Feb;58(1):30-47. doi: 10.1080/00273171.2021.1941730. Epub 2021 Jul 8.
5
Investigating Factorial Invariance of Latent Variables Across Populations When Manifest Variables Are Missing Completely.
Struct Equ Modeling. 2013 Jul 1;20(3):384-408. doi: 10.1080/10705511.2013.797819.
6
Psychometric properties of the Center for Epidemiologic Studies Depression Scale (CES-D) in French clinical and nonclinical adults.
Rev Epidemiol Sante Publique. 2011 Oct;59(5):327-40. doi: 10.1016/j.respe.2011.03.061. Epub 2011 Sep 16.
7
Relating Measurement Invariance, Cross-Level Invariance, and Multilevel Reliability.
Front Psychol. 2017 Oct 10;8:1640. doi: 10.3389/fpsyg.2017.01640. eCollection 2017.
9
A practical and theoretical guide to measurement invariance in aging research.
Exp Aging Res. 1992 Autumn-Winter;18(3-4):117-44. doi: 10.1080/03610739208253916.
10
Selecting scaling indicators in structural equation models (sems).
Psychol Methods. 2024 Oct;29(5):868-889. doi: 10.1037/met0000530. Epub 2022 Oct 6.

引用本文的文献

2
Neuropsychiatric symptoms predict rate of change in executive function in Alzheimer's disease and related dementias.
J Int Neuropsychol Soc. 2025 Jan;31(1):22-31. doi: 10.1017/S1355617724000730. Epub 2025 Jan 16.
3
Advancing differential susceptibility research: Development and validation of the temperamental sensitivity Q-scale.
Dev Psychol. 2024 Nov;60(11):2016-2037. doi: 10.1037/dev0001751. Epub 2024 Apr 25.
4
The Hitchhiker's guide to longitudinal models: A primer on model selection for repeated-measures methods.
Dev Cogn Neurosci. 2023 Oct;63:101281. doi: 10.1016/j.dcn.2023.101281. Epub 2023 Jul 26.
5
A life course view on depression: Social determinants of depressive symptom trajectories over 25 Years of Americans' Changing Lives.
SSM Popul Health. 2022 May 18;18:101125. doi: 10.1016/j.ssmph.2022.101125. eCollection 2022 Jun.
8
Dynamical Properties and Conceptual Interpretation of Latent Change Score Models.
Front Psychol. 2021 Jul 29;12:696419. doi: 10.3389/fpsyg.2021.696419. eCollection 2021.
9
The Age-Dependent Association Between Vascular Risk Factors and Depressed Mood.
J Gerontol B Psychol Sci Soc Sci. 2022 Feb 3;77(2):284-294. doi: 10.1093/geronb/gbab063.
10
Fitting Latent Growth Models with Small Sample Sizes and Non-normal Missing Data.
Int J Behav Dev. 2021 Mar;45(2):179-192. doi: 10.1177/0165025420979365. Epub 2021 Jan 7.

本文引用的文献

2
A Cross-Domain Model for Growth in Adolescent Alcohol Expectancies.
Multivariate Behav Res. 1998 Oct 1;33(4):509-43. doi: 10.1207/s15327906mbr3304_4.
3
6
Three-mode models for multivariate longitudinal data.
Br J Math Stat Psychol. 2001 May;54(Pt 1):49-78. doi: 10.1348/000711001159429.
7
Comparative fit indexes in structural models.
Psychol Bull. 1990 Mar;107(2):238-46. doi: 10.1037/0033-2909.107.2.238.
9
A practical and theoretical guide to measurement invariance in aging research.
Exp Aging Res. 1992 Autumn-Winter;18(3-4):117-44. doi: 10.1080/03610739208253916.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验