Suppr超能文献

用于评估选定免疫接种地点方案的被动冷藏设备经济模型。

A passive cold storage device economic model to evaluate selected immunization location scenarios.

机构信息

Department of Industrial Engineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States.

出版信息

Vaccine. 2013 Oct 25;31(45):5232-8. doi: 10.1016/j.vaccine.2013.08.079. Epub 2013 Sep 7.

Abstract

BACKGROUND

The challenge of keeping vaccines cold at health posts given the unreliability of power sources in many low- and middle-income countries and the expense and maintenance requirements of solar refrigerators has motivated the development of passive cold storage devices (PCDs), containers that keep vaccines cold without using an active energy source. With different PCDs under development, manufacturers, policymakers and funders need guidance on how varying different PCD characteristics may affect the devices' cost and utility.

METHODS

We developed an economic spreadsheet model representing the lowest two levels of a typical Expanded Program on Immunization (EPI) vaccine supply chain: a district store, the immunization locations that the district store serves, and the transport vehicles that operate between the district store and the immunization locations. The model compares the use of three vaccine storage device options [(1) portable PCDs, (2) stationary PCDs, or (3) solar refrigerators] and allows the user to vary different device (e.g., size and cost) and scenario characteristics (e.g., catchment area population size and vaccine schedule).

RESULTS

For a sample set of select scenarios and equipment specification, we found the portable PCD to generally be better suited to populations of 5,000 or less. The stationary PCD replenished once per month can be a robust design especially with a 35L capacity and a cost of $2,500 or less. The solar device was generally a reasonable alternative for most of the scenarios explored if the cost was $2,100 or less (including installation). No one device type dominated over all explored circumstances. Therefore, the best device may vary from country-to-country and location-to-location within a country.

CONCLUSIONS

This study introduces a quantitative model to help guide PCD development. Although our selected set of explored scenarios and device designs was not exhaustive, future explorations can further alter model input values to represent additional scenarios and device designs.

摘要

背景

在许多中低收入国家,由于电力供应不可靠以及太阳能冰箱的费用和维护要求,在卫生所保持疫苗冷藏带来了挑战,这促使开发了被动冷藏设备(PCD),即无需使用有源能源即可保持疫苗冷藏的容器。随着不同的 PCD 正在开发中,制造商、政策制定者和资金提供者需要指导,了解不同 PCD 特性如何影响设备的成本和实用性。

方法

我们开发了一个经济电子表格模型,代表典型扩大免疫规划(EPI)疫苗供应链的最低两个级别:地区储存库、地区储存库服务的免疫接种地点以及在地区储存库和免疫接种地点之间运行的运输车辆。该模型比较了三种疫苗储存设备选项的使用情况[(1)便携式 PCD、(2)固定式 PCD 或(3)太阳能冰箱],并允许用户改变不同设备(例如,尺寸和成本)和场景特征(例如,集水区人口规模和疫苗接种时间表)。

结果

对于一组选定的场景和设备规格,我们发现便携式 PCD 通常更适合人口规模为 5000 或以下的地区。每月补充一次的固定式 PCD 可以是一种强大的设计,特别是容量为 35L 且成本低于 2500 美元。如果成本低于 2100 美元(包括安装费用),太阳能设备通常是大多数探索场景的合理替代方案。没有一种设备类型在所有探索的情况下都占主导地位。因此,最佳设备可能因国家和国家内的地点而异。

结论

本研究引入了一种定量模型来帮助指导 PCD 的开发。尽管我们探索的场景和设备设计选择集并不详尽,但未来的探索可以进一步改变模型输入值,以代表其他场景和设备设计。

相似文献

1
A passive cold storage device economic model to evaluate selected immunization location scenarios.
Vaccine. 2013 Oct 25;31(45):5232-8. doi: 10.1016/j.vaccine.2013.08.079. Epub 2013 Sep 7.
2
When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study.
Vaccine. 2017 Apr 19;35(17):2224-2228. doi: 10.1016/j.vaccine.2016.11.103.
3
Demonstration of the Use of Remote Temperature Monitoring Devices in Vaccine Refrigerators in Haiti.
Public Health Rep. 2018 Jan/Feb;133(1):39-44. doi: 10.1177/0033354917742119. Epub 2017 Dec 20.
5
The impact of implementing a demand forecasting system into a low-income country's supply chain.
Vaccine. 2016 Jul 12;34(32):3663-9. doi: 10.1016/j.vaccine.2016.05.027. Epub 2016 May 21.
6
Have purpose-built vaccine refrigerators reduced the cost of vaccine losses in South Australia?
Aust N Z J Public Health. 2012 Dec;36(6):572-6. doi: 10.1111/j.1753-6405.2012.00932.x. Epub 2012 Nov 8.
8
Using solar-powered refrigeration for vaccine storage where other sources of reliable electricity are inadequate or costly.
Vaccine. 2013 Dec 9;31(51):6050-7. doi: 10.1016/j.vaccine.2013.07.076. Epub 2013 Aug 9.
9
The origins of the vaccine cold chain and a glimpse of the future.
Vaccine. 2017 Apr 19;35(17):2115-2120. doi: 10.1016/j.vaccine.2016.11.097.

引用本文的文献

1
Investigating the Efficacy of a Canine Rabies Vaccine Following Storage Outside of the Cold-Chain in a Passive Cooling Device.
Front Vet Sci. 2021 Sep 29;8:728271. doi: 10.3389/fvets.2021.728271. eCollection 2021.
2
A hub-and-spoke design for ultra-cold COVID-19 vaccine distribution.
Vaccine. 2021 Oct 1;39(41):6127-6136. doi: 10.1016/j.vaccine.2021.08.069. Epub 2021 Aug 25.
4
Using Simulation Modeling to Guide the Design of the Girl Scouts Fierce & Fit Program.
Obesity (Silver Spring). 2020 Jul;28(7):1317-1324. doi: 10.1002/oby.22827. Epub 2020 May 7.
5
The importance of vaccine supply chains to everyone in the vaccine world.
Vaccine. 2017 Aug 16;35(35 Pt A):4475-4479. doi: 10.1016/j.vaccine.2017.05.096. Epub 2017 Jun 16.
6
When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study.
Vaccine. 2017 Apr 19;35(17):2224-2228. doi: 10.1016/j.vaccine.2016.11.103.
7
A systems approach to vaccine decision making.
Vaccine. 2017 Jan 20;35 Suppl 1(Suppl 1):A36-A42. doi: 10.1016/j.vaccine.2016.11.033. Epub 2016 Dec 22.
8
Modular vaccine packaging increases packing efficiency.
Vaccine. 2015 Jun 17;33(27):3135-41. doi: 10.1016/j.vaccine.2015.04.091. Epub 2015 May 6.

本文引用的文献

1
The impact of making vaccines thermostable in Niger's vaccine supply chain.
Vaccine. 2012 Aug 17;30(38):5637-43. doi: 10.1016/j.vaccine.2012.06.087. Epub 2012 Jul 10.
3
Constructing target product profiles (TPPs) to help vaccines overcome post-approval obstacles.
Vaccine. 2010 Apr 1;28(16):2806-9. doi: 10.1016/j.vaccine.2009.09.047. Epub 2009 Sep 25.
4
Digital decision making: computer models and antibiotic prescribing in the twenty-first century.
Clin Infect Dis. 2008 Apr 15;46(8):1139-41. doi: 10.1086/529441.
5
Practical challenges of systems thinking and modeling in public health.
Am J Public Health. 2006 Mar;96(3):538-46. doi: 10.2105/AJPH.2005.066001. Epub 2006 Jan 31.
6
Screening the United States blood supply for West Nile Virus: a question of blood, dollars, and sense.
PLoS Med. 2006 Feb;3(2):e99. doi: 10.1371/journal.pmed.0030099. Epub 2006 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验