Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK.
Phys Biol. 2013 Oct;10(5):056004. doi: 10.1088/1478-3975/10/5/056004. Epub 2013 Sep 10.
The original ideas of Cooper and Dryden, that allosteric signalling can be induced between distant binding sites on proteins without any change in mean structural conformation, has proved to be a remarkably prescient insight into the rich structure of protein dynamics. It represents an alternative to the celebrated Monod-Wyman-Changeux mechanism and proposes that modulation of the amplitude of thermal fluctuations around a mean structure, rather than shifts in the structure itself, give rise to allostery in ligand binding. In a complementary approach to experiments on real proteins, here we take a theoretical route to identify the necessary structural components of this mechanism. By reviewing and extending an approach that moves from very coarse-grained to more detailed models, we show that, a fundamental requirement for a body supporting fluctuation-induced allostery is a strongly inhomogeneous elastic modulus. This requirement is reflected in many real proteins, where a good approximation of the elastic structure maps strongly coherent domains onto rigid blocks connected by more flexible interface regions.
库珀和德莱顿的原始思想是,变构信号可以在蛋白质上的远距离结合位点之间诱导,而无需结构构象的任何平均变化,这一思想被证明是对蛋白质动力学丰富结构的极具先见之明的见解。它代表了对著名的莫诺-韦曼-钱卓机制的一种替代方案,并提出调节围绕平均结构的热涨落幅度,而不是结构本身的变化,导致配体结合的变构。在对真实蛋白质进行实验的补充方法中,我们在这里采取理论方法来确定这种机制的必要结构成分。通过回顾和扩展从非常粗粒度到更详细模型的方法,我们表明,支持波动诱导变构的结构的一个基本要求是强烈不均匀的弹性模量。这种要求反映在许多真实蛋白质中,其中弹性结构的良好近似将强烈相干域映射到由更灵活的界面区域连接的刚性块上。