Campitelli Paul, Kazan I Can, Hamilton Sean, Ozkan S Banu
Department of Physics, Arizona State University, Tempe, AZ, United States; Center for Biological Physics, Arizona State University, Tempe, AZ, United States.
Department of Physics, Arizona State University, Tempe, AZ, United States; Center for Biological Physics, Arizona State University, Tempe, AZ, United States.
J Mol Biol. 2025 Apr 24:169175. doi: 10.1016/j.jmb.2025.169175.
Allostery is a core mechanism in biology that allows proteins to communicate and regulate activity over long structural distances. While classical models of allostery focus on conformational changes triggered by ligand binding, dynamic allostery-where protein function is modulated through alterations in thermal fluctuations without major conformational shifts-has emerged as a critical evolutionary mechanism. This review explores how evolution leverages dynamic allostery to fine-tune protein function through subtle mutations at distal sites, preserving core structural architecture while dramatically altering functional properties. Using a combination of computational approaches including Dynamic Flexibility Index (DFI), Dynamic Coupling Index (DCI), and vibrational density of states (VDOS) analysis, we demonstrate that functional adaptations in proteins often involve "hinge-shift" mechanisms, where redistribution of rigid and flexible regions modulates collective motions without changing the overall fold. This evolutionary principle is a double-edged sword: the same mechanisms that enable functional innovation also create vulnerabilities that can be exploited in disease states. Disease-associated variants frequently occur at positions highly coupled to functional sites despite being physically distant, forming Dynamic Allosteric Residue Couples (DARC sites). We demonstrate applications of these principles in understanding viral evolution, drug resistance, and capsid assembly dynamics. Understanding dynamic allostery provides critical insights into protein evolution and offers new avenues for therapeutic interventions targeting allosteric regulation.
别构效应是生物学中的一种核心机制,它使蛋白质能够在长距离结构间进行通讯并调节活性。虽然经典的别构模型聚焦于配体结合引发的构象变化,但动态别构效应(即通过热涨落的改变而非主要的构象转变来调节蛋白质功能)已成为一种关键的进化机制而出现。本综述探讨了进化如何利用动态别构效应,通过远端位点处细微的突变来微调蛋白质功能,在保持核心结构架构的同时显著改变功能特性。我们结合使用包括动态柔韧性指数(DFI)、动态耦合指数(DCI)和态密度振动分析(VDOS)在内的多种计算方法,证明蛋白质中的功能适应性通常涉及“铰链移位”机制,即刚性和柔性区域的重新分布在不改变整体折叠的情况下调节集体运动。这一进化原理是一把双刃剑:促成功能创新的相同机制也会产生在疾病状态下可能被利用的脆弱性。尽管在物理位置上相隔较远,但与疾病相关的变体经常出现在与功能位点高度耦合的位置,形成动态别构残基偶联(DARC位点)。我们展示了这些原理在理解病毒进化、耐药性和衣壳组装动力学方面的应用。理解动态别构效应为蛋白质进化提供了关键见解,并为针对别构调节的治疗干预提供了新途径。