Amino Acids. 2013 Nov;45(5):1055-71. doi: 10.1007/s00726-013-1584-z.
Recent advancement in nanomedicine suggests that nanodrug delivery using nanoformulation of drugs or use of nanoparticles for neurodiagnostic and/or neurotherapeutic purposes results in superior effects than the conventional drugs or parent compounds. This indicates a bright future for nanomedicine in treating neurological diseases in clinics. However, the effects of nanoparticles per se in inducing neurotoxicology by altering amino acid neurotransmitters, if any, are still being largely ignored. The main aim of nanomedicine is to enhance the drug availability within the central nervous system (CNS) for greater therapeutic successes. However, once the drug together with nanoparticles enters into the CNS compartments, the fate of nanomaterial within the brain microenvironment is largely remained unknown. Thus, to achieve greater success in nanomedicine, our knowledge in understanding nanoneurotoxicology in detail is utmost important. In addition, how co-morbidity factors associated with neurological disease, e.g., stress, trauma, hypertension or diabetes, may influence the neurotherapeutic potentials of nanomedicine are also necessary to explore the details. Recent research in our laboratory demonstrated that engineered nanoparticles from metals or titanium nanowires used for nanodrug delivery in laboratory animals markedly influenced the CNS functions and alter amino acid neurotransmitters in healthy animals. These adverse reactions of nanoparticles within the CNS are further aggravated in animals with different co-morbidity factors viz., stress, diabetes, trauma or hypertension. This effect, however, depends on the composition and dose of the nanomaterials used. On the other hand, nanodrug delivery by TiO2 nanowires enhanced the neurotherapeutic potential of the parent compounds in CNS injuries in healthy animals and do not alter amino acids balance. However, in animals with any of the above co-morbidity factors, high dose of nanodrug delivery is needed to achieve some neuroprotection. Taken together, it appears that while exploring new nanodrug formulations for neurotherapeutic purposes, co-morbidly factors and composition of nanoparticlesrequire more attention. Furthermore, neurotoxicity caused by nanoparticles per se following nanodrug delivery may be examined in greater detail with special regards to changes in amino acid balance in the CNS.
近年来,纳米医学的发展表明,通过纳米药物制剂或使用纳米颗粒进行神经诊断和/或神经治疗的目的,比传统药物或母体化合物具有更好的效果。这表明纳米医学在临床治疗神经疾病方面有着光明的前景。然而,纳米颗粒本身通过改变氨基酸神经递质来诱导神经毒理学的影响,(如果有的话),仍然在很大程度上被忽视。纳米医学的主要目的是提高药物在中枢神经系统(CNS)中的可用性,以获得更大的治疗成功。然而,一旦药物与纳米颗粒一起进入 CNS 隔室,纳米材料在大脑微环境中的命运在很大程度上仍然未知。因此,为了在纳米医学中取得更大的成功,我们对纳米神经毒理学的详细了解是至关重要的。此外,还需要探讨与神经疾病相关的合并症因素,如压力、创伤、高血压或糖尿病,如何影响纳米医学的神经治疗潜力。我们实验室的最近研究表明,用于实验室动物纳米药物递送的金属或钛纳米线制成的工程纳米颗粒显著影响了中枢神经系统的功能,并改变了健康动物的氨基酸神经递质。在患有不同合并症因素(如压力、糖尿病、创伤或高血压)的动物中,纳米颗粒在中枢神经系统内的这些不良反应进一步加重。然而,这种影响取决于所使用的纳米材料的组成和剂量。另一方面,TiO2 纳米线的纳米药物递送增强了健康动物中枢神经系统损伤中母体化合物的神经治疗潜力,且不会改变氨基酸平衡。然而,在患有上述任何一种合并症因素的动物中,需要高剂量的纳米药物递送才能实现一些神经保护。总之,在探索用于神经治疗目的的新纳米药物制剂时,似乎需要更多地关注合并症因素和纳米颗粒的组成。此外,需要更详细地研究纳米药物递送后纳米颗粒本身引起的神经毒性,特别要注意中枢神经系统中氨基酸平衡的变化。