Department of Chemistry, Iowa State University, Ames, Iowa, 50011.
Protein Sci. 2013 Nov;22(11):1623-38. doi: 10.1002/pro.2368. Epub 2013 Oct 7.
The influenza A M2 protein forms a proton channel for virus infection and mediates virus assembly and budding. While extensive structural information is known about the transmembrane helix and an adjacent amphipathic helix, the conformation of the N-terminal ectodomain and the C-terminal cytoplasmic tail remains largely unknown. Using two-dimensional (2D) magic-angle-spinning solid-state NMR, we have investigated the secondary structure and dynamics of full-length M2 (M2FL) and found them to depend on the membrane composition. In 2D (13)C DARR correlation spectra, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-bound M2FL exhibits several peaks at β-sheet chemical shifts, which result from water-exposed extramembrane residues. In contrast, M2FL bound to cholesterol-containing membranes gives predominantly α-helical chemical shifts. Two-dimensional J-INADEQUATE spectra and variable-temperature (13)C spectra indicate that DMPC-bound M2FL is highly dynamic while the cholesterol-containing membranes significantly immobilize the protein at physiological temperature. Chemical-shift prediction for various secondary-structure models suggests that the β-strand is located at the N-terminus of the DMPC-bound protein, while the cytoplasmic domain is unstructured. This prediction is confirmed by the 2D DARR spectrum of the ectodomain-truncated M2(21-97), which no longer exhibits β-sheet chemical shifts in the DMPC-bound state. We propose that the M2 conformational change results from the influence of cholesterol, and the increased helicity of M2FL in cholesterol-rich membranes may be relevant for M2 interaction with the matrix protein M1 during virus assembly and budding. The successful determination of the β-strand location suggests that chemical-shift prediction is a promising approach for obtaining structural information of disordered proteins before resonance assignment.
甲型流感病毒 M2 蛋白形成质子通道以感染病毒,并介导病毒的组装和出芽。虽然关于跨膜螺旋和相邻的两亲性螺旋的结构信息已经很广泛,但 N 端胞外域和 C 端胞质尾的构象在很大程度上仍然未知。使用二维(2D)魔角旋转固态 NMR,我们研究了全长 M2(M2FL)的二级结构和动态,发现它们取决于膜成分。在 2D(13)C DARR 相关谱中,1,2-二肉豆蔻酰基-sn-甘油-3-磷酸胆碱(DMPC)结合的 M2FL 在β-折叠化学位移处表现出几个峰,这些峰是由暴露于水的膜外残基引起的。相比之下,与含有胆固醇的膜结合的 M2FL 主要给出α-螺旋化学位移。二维 J-INADEQUATE 谱和变温(13)C 谱表明,DMPC 结合的 M2FL 高度动态,而含有胆固醇的膜在生理温度下显著固定蛋白质。各种二级结构模型的化学位移预测表明,β-链位于 DMPC 结合蛋白的 N 端,而胞质域无结构。这一预测通过 2D DARR 谱得到证实,截短的 M2(21-97)的胞外域,在 DMPC 结合状态下不再显示β-折叠化学位移。我们提出,M2 的构象变化是由胆固醇的影响引起的,M2FL 在富含胆固醇的膜中增加的螺旋度可能与 M2 在病毒组装和出芽过程中与基质蛋白 M1 的相互作用有关。β-链位置的成功确定表明,化学位移预测是在共振分配之前获得无序蛋白质结构信息的一种很有前途的方法。