Suppr超能文献

NMR 测定具有不同曲率的膜域中蛋白质的分配及其在流感 M2 肽中的应用。

NMR determination of protein partitioning into membrane domains with different curvatures and application to the influenza M2 peptide.

机构信息

Department of Chemistry, Iowa State University, Ames, Iowa, USA.

出版信息

Biophys J. 2012 Feb 22;102(4):787-94. doi: 10.1016/j.bpj.2012.01.010. Epub 2012 Feb 21.

Abstract

The M2 protein of the influenza A virus acts both as a drug-sensitive proton channel and mediates virus budding through membrane scission. The segment responsible for causing membrane curvature is an amphipathic helix in the cytoplasmic domain of the protein. Here, we use (31)P and (13)C solid-state NMR to examine M2-induced membrane curvature. M2(22-46), which includes only the transmembrane (TM) helix, and M2(21-61), which contains an additional amphipathic helix, are studied. (31)P chemical shift lineshapes indicate that M2(21-61) causes a high-curvature isotropic phase to both cholesterol-rich virus-mimetic membranes and 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayers, whereas M2(22-46) has minimal effect. The lamellar and isotropic domains have distinct (31)P isotropic chemical shifts, indicating perturbation of the lipid headgroup conformation by the amphipathic helix. (31)P- and (13)C-detected (1)H T(2) relaxation and two-dimensional peptide-lipid correlation spectra show that M2(21-61) preferentially binds to the high-curvature domain. (31)P linewidths indicate that the isotropic vesicles induced by M2(21-61) are 10-35 nm in diameter, and the virus-mimetic vesicles are smaller than the 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles. A strong correlation is found between high membrane curvature and weak drug-binding ability of the TM helix. Thus, the M2 amphipathic helix causes membrane curvature, which in turn perturbs the TM helix conformation, abolishing drug binding. These NMR experiments are applicable to other curvature-inducing membrane proteins such as fusion proteins and antimicrobial peptides.

摘要

甲型流感病毒的 M2 蛋白既是一种药物敏感性质子通道,又是介导病毒出芽的膜分裂因子。负责引起膜曲率的片段是蛋白质细胞质结构域中的一个两亲性螺旋。在这里,我们使用 (31)P 和 (13)C 固态 NMR 来研究 M2 诱导的膜曲率。研究了仅包含跨膜 (TM) 螺旋的 M2(22-46)和包含额外的两亲性螺旋的 M2(21-61)。(31)P 化学位移线形状表明,M2(21-61)使富含胆固醇的病毒模拟膜和 1,2-二肉豆蔻酰基-sn-甘油-3-磷酸胆碱双层膜均具有高曲率各向同性相,而 M2(22-46)的影响则最小。层状和各向同性区域具有不同的 (31)P 各向同性化学位移,表明两亲性螺旋会破坏脂质头部基团的构象。(31)P 和 (13)C 检测的 (1)H T(2)弛豫和二维肽-脂质相关谱表明,M2(21-61)优先与高曲率区域结合。(31)P 线宽表明 M2(21-61)诱导的各向同性囊泡的直径为 10-35nm,而病毒模拟囊泡的直径小于 1,2-二肉豆蔻酰基-sn-甘油-3-磷酸胆碱囊泡。发现高膜曲率与 TM 螺旋弱药物结合能力之间存在很强的相关性。因此,M2 两亲性螺旋会引起膜曲率,进而扰乱 TM 螺旋构象,从而阻止药物结合。这些 NMR 实验适用于其他引起曲率的膜蛋白,如融合蛋白和抗菌肽。

相似文献

3
Isotropic bicelles stabilize the juxtamembrane region of the influenza M2 protein for solution NMR studies.
Biochemistry. 2013 Nov 26;52(47):8420-9. doi: 10.1021/bi401035m. Epub 2013 Nov 14.
4
Membrane-dependent effects of a cytoplasmic helix on the structure and drug binding of the influenza virus M2 protein.
J Am Chem Soc. 2011 Aug 3;133(30):11572-9. doi: 10.1021/ja202051n. Epub 2011 Jul 7.
5
Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR.
Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):12946-12951. doi: 10.1073/pnas.1715127114. Epub 2017 Nov 20.
6
Interplay between membrane curvature and protein conformational equilibrium investigated by solid-state NMR.
J Struct Biol. 2019 Apr 1;206(1):20-28. doi: 10.1016/j.jsb.2018.02.007. Epub 2018 Mar 1.
8
Conformational analysis of the full-length M2 protein of the influenza A virus using solid-state NMR.
Protein Sci. 2013 Nov;22(11):1623-38. doi: 10.1002/pro.2368. Epub 2013 Oct 7.
10
Chemical ligation of the influenza M2 protein for solid-state NMR characterization of the cytoplasmic domain.
Protein Sci. 2015 Jul;24(7):1087-99. doi: 10.1002/pro.2690. Epub 2015 May 27.

引用本文的文献

1
The Role of Cholesterol in M2 Clustering and Viral Budding Explained.
J Chem Theory Comput. 2025 Jan 28;21(2):912-932. doi: 10.1021/acs.jctc.4c01026. Epub 2024 Nov 4.
2
Cholesterol and M2 Rendezvous in Budding and Scission of Influenza A Virus.
Subcell Biochem. 2023;106:441-459. doi: 10.1007/978-3-031-40086-5_16.
3
Teixobactin kills bacteria by a two-pronged attack on the cell envelope.
Nature. 2022 Aug;608(7922):390-396. doi: 10.1038/s41586-022-05019-y. Epub 2022 Aug 3.
4
Interactions of HIV gp41's membrane-proximal external region and transmembrane domain with phospholipid membranes from P NMR.
Biochim Biophys Acta Biomembr. 2021 Nov 1;1863(11):183723. doi: 10.1016/j.bbamem.2021.183723. Epub 2021 Aug 2.
5
Origin and Evolution of H1N1/pdm2009: A Codon Usage Perspective.
Front Microbiol. 2020 Jul 14;11:1615. doi: 10.3389/fmicb.2020.01615. eCollection 2020.
6
Biomolecular complex viewed by dynamic nuclear polarization solid-state NMR spectroscopy.
Biochem Soc Trans. 2020 Jun 30;48(3):1089-1099. doi: 10.1042/BST20191084.
7
Atomic structures of closed and open influenza B M2 proton channel reveal the conduction mechanism.
Nat Struct Mol Biol. 2020 Feb;27(2):160-167. doi: 10.1038/s41594-019-0371-2. Epub 2020 Feb 3.
8
Integrated solid-state NMR and molecular dynamics modeling determines membrane insertion of human β-defensin analog.
Commun Biol. 2019 Nov 1;2:402. doi: 10.1038/s42003-019-0653-6. eCollection 2019.
9
Entropic forces drive clustering and spatial localization of influenza A M2 during viral budding.
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):E8595-E8603. doi: 10.1073/pnas.1805443115. Epub 2018 Aug 27.
10
Interplay between membrane curvature and protein conformational equilibrium investigated by solid-state NMR.
J Struct Biol. 2019 Apr 1;206(1):20-28. doi: 10.1016/j.jsb.2018.02.007. Epub 2018 Mar 1.

本文引用的文献

1
Membrane-dependent effects of a cytoplasmic helix on the structure and drug binding of the influenza virus M2 protein.
J Am Chem Soc. 2011 Aug 3;133(30):11572-9. doi: 10.1021/ja202051n. Epub 2011 Jul 7.
2
Criterion for amino acid composition of defensins and antimicrobial peptides based on geometry of membrane destabilization.
J Am Chem Soc. 2011 May 4;133(17):6720-7. doi: 10.1021/ja200079a. Epub 2011 Apr 7.
4
Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR.
Protein Sci. 2011 Apr;20(4):641-55. doi: 10.1002/pro.600. Epub 2011 Mar 7.
5
Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer.
Science. 2010 Oct 22;330(6003):509-12. doi: 10.1126/science.1191750.
6
Influenza virus M2 protein mediates ESCRT-independent membrane scission.
Cell. 2010 Sep 17;142(6):902-13. doi: 10.1016/j.cell.2010.08.029.
7
Influence of solubilizing environments on membrane protein structures.
Trends Biochem Sci. 2011 Feb;36(2):117-25. doi: 10.1016/j.tibs.2010.07.005. Epub 2010 Aug 18.
8
Influenza virus m2 ion channel protein is necessary for filamentous virion formation.
J Virol. 2010 May;84(10):5078-88. doi: 10.1128/JVI.00119-10. Epub 2010 Mar 10.
10
Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers.
Nature. 2010 Feb 4;463(7281):689-92. doi: 10.1038/nature08722.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验