Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):E3695-703. doi: 10.1073/pnas.1305624110. Epub 2013 Sep 10.
Spontaneous hydrolytic deamination of cytosine to uracil (U) in DNA is a constant source of genome instability in cells. This mutagenic process is greatly enhanced at high temperatures and in single-stranded DNA. If not repaired, these uracil residues give rise to C → T transitions, which are the most common spontaneous mutations occurring in living organisms and are frequently found in human tumors. In the majority of species, uracil residues are removed from DNA by specific uracil-DNA glycosylases in the base excision repair pathway. Alternatively, in certain archaeal organisms, uracil residues are eliminated by apurinic/apyrimidinic (AP) endonucleases in the nucleotide incision repair pathway. Here, we characterized the substrate specificity of the major human AP endonuclease 1, APE1, toward U in duplex DNA. APE1 cleaves oligonucleotide duplexes containing a single U⋅G base pair; this activity depends strongly on the sequence context and the base opposite to U. The apparent kinetic parameters of the reactions show that APE1 has high affinity for DNA containing U but cleaves the DNA duplex at an extremely low rate. MALDI-TOF MS analysis of the reaction products demonstrated that APE1-catalyzed cleavage of a U⋅G duplex generates the expected DNA fragments containing a 5'-terminal deoxyuridine monophosphate. The fact that U in duplex DNA is recognized and cleaved by APE1 in vitro suggests that this property of the exonuclease III family of AP endonucleases is remarkably conserved from Archaea to humans. We propose that nucleotide incision repair may act as a backup pathway to base excision repair to remove uracils arising from cytosine deamination.
DNA 中胞嘧啶自发水解脱氨生成尿嘧啶(U)是细胞中基因组不稳定性的一个持续来源。这种诱变过程在高温和单链 DNA 中大大增强。如果不修复,这些尿嘧啶残基会导致 C→T 转换,这是生物体内最常见的自发突变,并且经常在人类肿瘤中发现。在大多数物种中,尿嘧啶残基通过碱基切除修复途径中的特定尿嘧啶-DNA 糖基化酶从 DNA 中去除。或者,在某些古菌生物中,尿嘧啶残基通过核苷酸切口修复途径中的脱嘌呤/脱嘧啶(AP)内切酶消除。在这里,我们表征了主要人类 AP 内切酶 1(APE1)对双链 DNA 中 U 的底物特异性。APE1 切割含有单个 U⋅G 碱基对的寡核苷酸双链;这种活性强烈依赖于序列上下文和与 U 相对的碱基。反应的表观动力学参数表明,APE1 对含有 U 的 DNA 具有高亲和力,但以极低的速率切割 DNA 双链。反应产物的 MALDI-TOF MS 分析表明,APE1 催化的 U⋅G 双链体的切割生成预期的含有 5'-末端脱氧尿苷单磷酸的 DNA 片段。体外 APE1 识别和切割双链 DNA 中的 U 表明,AP 内切酶 III 家族的这种外切酶特性在古菌到人中具有惊人的保守性。我们提出核苷酸切口修复可能作为碱基切除修复的备用途径,以去除胞嘧啶脱氨产生的尿嘧啶。