Suppr超能文献

嘧啶氧化产物脒基脲的碱基切除和核苷酸切口修复途径的去除新见解。

New insights in the removal of the hydantoins, oxidation product of pyrimidines, via the base excision and nucleotide incision repair pathways.

机构信息

Groupe Réparation de l'ADN, CNRS UMR8200, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France.

出版信息

PLoS One. 2011;6(7):e21039. doi: 10.1371/journal.pone.0021039. Epub 2011 Jul 25.

Abstract

BACKGROUND

Oxidative damage to DNA, if not repaired, can be both miscoding and blocking. These genetic alterations can lead to mutations and/or cell death, which in turn cause cancer and aging. Oxidized DNA bases are substrates for two overlapping repair pathways: base excision (BER) and nucleotide incision repair (NIR). Hydantoin derivatives such as 5-hydroxyhydantoin (5OH-Hyd) and 5-methyl-5-hydroxyhydantoin (5OH-5Me-Hyd), major products of cytosine and thymine oxidative degradation pathways, respectively, have been detected in cancer cells and ancient DNA. Hydantoins are blocking lesions for DNA polymerases and excised by bacterial and yeast DNA glycosylases in the BER pathway. However little is known about repair of pyrimidine-derived hydantoins in human cells.

METHODOLOGY/PRINCIPAL FINDINGS: Here, using both denaturing PAGE and MALDI-TOF MS analyses we report that the bacterial, yeast and human AP endonucleases can incise duplex DNA 5' next to 5OH-Hyd and 5OH-5Me-Hyd thus initiating the NIR pathway. We have fully reconstituted the NIR pathway for these lesions in vitro using purified human proteins. Depletion of Nfo in E. coli and APE1 in HeLa cells abolishes the NIR activity in cell-free extracts. Importantly, a number of redundant DNA glycosylase activities can excise hydantoin residues, including human NTH1, NEIL1 and NEIL2 and the former protein being a major DNA glycosylase activity in HeLa cells extracts.

CONCLUSIONS/SIGNIFICANCE: This study demonstrates that both BER and NIR pathways can compete and/or back-up each other to remove hydantoin DNA lesions in vivo.

摘要

背景

如果未修复 DNA 的氧化损伤,它可能会导致碱基错配和链阻滞。这些遗传改变可导致突变和/或细胞死亡,进而引发癌症和衰老。氧化的 DNA 碱基是两条重叠修复途径的底物:碱基切除(BER)和核苷酸切除修复(NIR)。分别是胞嘧啶和胸腺嘧啶氧化降解途径的主要产物的乙内酰脲衍生物,如 5-羟基乙内酰脲(5OH-Hyd)和 5-甲基-5-羟基乙内酰脲(5OH-5Me-Hyd),已在癌细胞和古 DNA 中被检测到。乙内酰脲是 DNA 聚合酶的阻滞性损伤,可在 BER 途径中被细菌和酵母 DNA 糖苷酶切除。然而,关于人类细胞中嘧啶衍生的乙内酰脲的修复知之甚少。

方法/主要发现:在这里,我们使用变性 PAGE 和 MALDI-TOF MS 分析报告称,细菌、酵母和人类 AP 内切酶可以在 5' 附近切割双链 DNA 5OH-Hyd 和 5OH-5Me-Hyd,从而启动 NIR 途径。我们已经使用纯化的人类蛋白在体外充分重建了这些损伤的 NIR 途径。在大肠杆菌中耗尽 Nfo 和在 HeLa 细胞中耗尽 APE1 会在无细胞提取物中消除 NIR 活性。重要的是,许多冗余的 DNA 糖苷酶活性可以切除乙内酰脲残基,包括人类 NTH1、NEIL1 和 NEIL2,而前一种蛋白是 HeLa 细胞提取物中的主要 DNA 糖苷酶活性。

结论/意义:这项研究表明,BER 和 NIR 途径都可以竞争和/或相互支持,以在体内清除乙内酰脲 DNA 损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b35/3143120/1824b8c48805/pone.0021039.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验