Suppr超能文献

通过组合共识和单评分方法选择蛋白质结构模型。

Protein structural model selection by combining consensus and single scoring methods.

机构信息

Department of Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Missouri, United States of America.

出版信息

PLoS One. 2013 Sep 2;8(9):e74006. doi: 10.1371/journal.pone.0074006. eCollection 2013.

Abstract

Quality assessment (QA) for predicted protein structural models is an important and challenging research problem in protein structure prediction. Consensus Global Distance Test (CGDT) methods assess each decoy (predicted structural model) based on its structural similarity to all others in a decoy set and has been proved to work well when good decoys are in a majority cluster. Scoring functions evaluate each single decoy based on its structural properties. Both methods have their merits and limitations. In this paper, we present a novel method called PWCom, which consists of two neural networks sequentially to combine CGDT and single model scoring methods such as RW, DDFire and OPUS-Ca. Specifically, for every pair of decoys, the difference of the corresponding feature vectors is input to the first neural network which enables one to predict whether the decoy-pair are significantly different in terms of their GDT scores to the native. If yes, the second neural network is used to decide which one of the two is closer to the native structure. The quality score for each decoy in the pool is based on the number of winning times during the pairwise comparisons. Test results on three benchmark datasets from different model generation methods showed that PWCom significantly improves over consensus GDT and single scoring methods. The QA server (MUFOLD-Server) applying this method in CASP 10 QA category was ranked the second place in terms of Pearson and Spearman correlation performance.

摘要

蛋白质结构预测中预测蛋白结构模型的质量评估(QA)是一个重要且具有挑战性的研究问题。一致性全局距离测试(CGDT)方法根据预测结构模型与模型集内所有其他模型的结构相似性来评估每个诱饵(预测结构模型),并且在大多数良好诱饵聚在一起时效果良好。评分函数根据结构属性评估每个单独的诱饵。这两种方法都有其优点和局限性。在本文中,我们提出了一种称为 PWCom 的新方法,它由两个神经网络顺序组成,用于结合 CGDT 和单模型评分方法,如 RW、DDFire 和 OPUS-Ca。具体来说,对于每一对诱饵,相应特征向量的差异被输入到第一个神经网络中,这使得能够预测诱饵对在其 GDT 得分与天然结构方面是否存在显著差异。如果是,则使用第二个神经网络来确定两个诱饵中哪一个更接近天然结构。池中的每个诱饵的质量得分基于在成对比较中获胜的次数。来自不同模型生成方法的三个基准数据集的测试结果表明,PWCom 显著优于共识 GDT 和单评分方法。在 CASP10QA 类别中应用此方法的 QA 服务器(MUFOLD-Server)在 Pearson 和 Spearman 相关性能方面排名第二。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d33/3759460/0a6d0be078fa/pone.0074006.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验