Suppr超能文献

纯粹基于结构的蛋白质打分函数:支持向量机和集成学习方法

Purely Structural Protein Scoring Functions Using Support Vector Machine and Ensemble Learning.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2019 Sep-Oct;16(5):1515-1523. doi: 10.1109/TCBB.2016.2602269. Epub 2016 Aug 24.

Abstract

The function of a protein is determined by its structure, which creates a need for efficient methods of protein structure determination to advance scientific and medical research. Because current experimental structure determination methods carry a high price tag, computational predictions are highly desirable. Given a protein sequence, computational methods produce numerous 3D structures known as decoys. Selection of the best quality decoys is both challenging and essential as the end users can handle only a few ones. Therefore, scoring functions are central to decoy selection. They combine measurable features into a single number indicator of decoy quality. Unfortunately, current scoring functions do not consistently select the best decoys. Machine learning techniques offer great potential to improve decoy scoring. This paper presents two machine-learning based scoring functions to predict the quality of proteins structures, i.e., the similarity between the predicted structure and the experimental one without knowing the latter. We use different metrics to compare these scoring functions against three state-of-the-art scores. This is a first attempt at comparing different scoring functions using the same non-redundant dataset for training and testing and the same features. The results show that adding informative features may be more significant than the method used.

摘要

蛋白质的功能取决于其结构,这就需要高效的蛋白质结构确定方法来推动科学和医学研究。由于当前的实验结构确定方法代价高昂,因此计算预测是非常需要的。给定一个蛋白质序列,计算方法会生成许多称为诱饵的 3D 结构。选择最佳质量的诱饵既具有挑战性,又至关重要,因为最终用户只能处理少数几个诱饵。因此,评分函数是诱饵选择的核心。它们将可测量的特征组合成一个单一的诱饵质量指示数字。不幸的是,当前的评分函数并不能始终选择最佳的诱饵。机器学习技术为改进诱饵评分提供了巨大的潜力。本文提出了两种基于机器学习的评分函数,用于预测蛋白质结构的质量,即预测结构与实验结构之间的相似性,而无需了解后者。我们使用不同的指标来比较这些评分函数与三种最先进的评分方法。这是首次使用相同的非冗余数据集进行训练和测试以及相同的特征来比较不同的评分函数。结果表明,添加信息丰富的特征可能比使用的方法更为重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验