Suppr超能文献

果蝇翅膀分离基因锚定了一个新的、进化上保守的神经肌肉发育途径。

The Drosophila wings apart gene anchors a novel, evolutionarily conserved pathway of neuromuscular development.

机构信息

Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131.

出版信息

Genetics. 2013 Nov;195(3):927-40. doi: 10.1534/genetics.113.154211. Epub 2013 Sep 11.

Abstract

wings apart (wap) is a recessive, semilethal gene located on the X chromosome in Drosophila melanogaster, which is required for normal wing-vein patterning. We show that the wap mutation also results in loss of the adult jump muscle. We use complementation mapping and gene-specific RNA interference to localize the wap locus to the proximal X chromosome. We identify the annotated gene CG14614 as the gene affected by the wap mutation, since one wap allele contains a non-sense mutation in CG14614, and a genomic fragment containing only CG14614 rescues the jump-muscle phenotypes of two wap mutant alleles. The wap gene lies centromere-proximal to touch-insensitive larva B and centromere-distal to CG14619, which is tentatively assigned as the gene affected in introverted mutants. In mutant wap animals, founder cell precursors for the jump muscle are specified early in development, but are later lost. Through tissue-specific knockdowns, we demonstrate that wap function is required in both the musculature and the nervous system for normal jump-muscle formation. wap/CG14614 is homologous to vertebrate wdr68, DDB1 and CUL4 associated factor 7, which also are expressed in neuromuscular tissues. Thus, our findings provide insight into mechanisms of neuromuscular development in higher animals and facilitate the understanding of neuromuscular diseases that may result from mis-expression of muscle-specific or neuron-specific genes.

摘要

翅膀分开 (wap) 是一个位于黑腹果蝇 X 染色体上的隐性、半致死基因,对于正常的翅膀脉模式形成是必需的。我们表明,wap 突变也导致成虫跳跃肌肉的丧失。我们使用互补作图和基因特异性 RNA 干扰将 wap 基因座定位到近端 X 染色体。我们将注释基因 CG14614 鉴定为受 wap 突变影响的基因,因为一个 wap 等位基因在 CG14614 中包含一个无义突变,并且仅包含 CG14614 的基因组片段可以挽救两个 wap 突变等位基因的跳跃肌肉表型。wap 基因位于 touch-insensitive larva B 的着丝粒近端和 CG14619 的着丝粒远端,后者被暂时指定为内向突变体中受影响的基因。在突变的 wap 动物中,跳跃肌肉的创始细胞前体在发育早期被指定,但后来丢失。通过组织特异性敲低,我们证明 wap 功能在跳跃肌肉的肌肉组织和神经系统中都是正常跳跃肌肉形成所必需的。wap/CG14614 与脊椎动物 wdr68、DDB1 和 CUL4 相关因子 7 同源,它们也在神经肌肉组织中表达。因此,我们的发现为高等动物的神经肌肉发育机制提供了深入的了解,并促进了对可能由于肌肉特异性或神经元特异性基因的错误表达而导致的神经肌肉疾病的理解。

相似文献

1
The Drosophila wings apart gene anchors a novel, evolutionarily conserved pathway of neuromuscular development.
Genetics. 2013 Nov;195(3):927-40. doi: 10.1534/genetics.113.154211. Epub 2013 Sep 11.
6
The gang of four gene regulates growth and patterning of the developing Drosophila eye.
Fly (Austin). 2010 Apr-Jun;4(2):104-16. doi: 10.4161/fly.4.2.11890. Epub 2010 Apr 24.
7
dumpy interacts with a large number of genes in the developing wing of Drosophila melanogaster.
Fly (Austin). 2010 Apr-Jun;4(2):117-27. doi: 10.4161/fly.4.2.11953. Epub 2010 Apr 2.
10
Muscle development in the four-winged Drosophila and the role of the Ultrabithorax gene.
Curr Biol. 1994 Nov 1;4(11):957-64. doi: 10.1016/s0960-9822(00)00219-0.

引用本文的文献

1
Essential roles of DCAF7/WDR68 in mouse embryonic development.
J Transl Med. 2025 Jun 3;23(1):626. doi: 10.1186/s12967-025-06639-4.
2
WDR68 stimulates cellular proliferation via activating ribosome biogenesis in 293T cells.
Neoplasia. 2024 Oct;56:101033. doi: 10.1016/j.neo.2024.101033. Epub 2024 Jul 26.
3
Insights from the protein interaction Universe of the multifunctional "Goldilocks" kinase DYRK1A.
Front Cell Dev Biol. 2023 Oct 12;11:1277537. doi: 10.3389/fcell.2023.1277537. eCollection 2023.
4
DCAF7 regulates cell proliferation through IRS1-FOXO1 signaling.
iScience. 2022 Sep 24;25(10):105188. doi: 10.1016/j.isci.2022.105188. eCollection 2022 Oct 21.
5
DCAF7/WDR68 is required for normal levels of DYRK1A and DYRK1B.
PLoS One. 2018 Nov 29;13(11):e0207779. doi: 10.1371/journal.pone.0207779. eCollection 2018.
6
The Adenovirus E1A C Terminus Suppresses a Delayed Antiviral Response and Modulates RAS Signaling.
Cell Host Microbe. 2017 Dec 13;22(6):789-800.e5. doi: 10.1016/j.chom.2017.11.008.
7
Minibrain and Wings apart control organ growth and tissue patterning through down-regulation of Capicua.
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10583-8. doi: 10.1073/pnas.1609417113. Epub 2016 Sep 6.

本文引用的文献

2
The developmental transcriptome of Drosophila melanogaster.
Nature. 2011 Mar 24;471(7339):473-9. doi: 10.1038/nature09715. Epub 2010 Dec 22.
3
The Drosophila LEM-domain protein MAN1 antagonizes BMP signaling at the neuromuscular junction and the wing crossveins.
Dev Biol. 2010 Mar 1;339(1):1-13. doi: 10.1016/j.ydbio.2009.11.036. Epub 2009 Dec 28.
4
Crossveinless and the TGFbeta pathway regulate fiber number in the Drosophila adult jump muscle.
Development. 2009 Apr;136(7):1105-13. doi: 10.1242/dev.031567. Epub 2009 Feb 25.
5
Roles of TGF-beta family signaling in stem cell renewal and differentiation.
Cell Res. 2009 Jan;19(1):103-15. doi: 10.1038/cr.2008.323.
6
Tissue-specific defects are caused by loss of the Drosophila MAN1 LEM domain protein.
Genetics. 2008 Sep;180(1):133-45. doi: 10.1534/genetics.108.091371. Epub 2008 Aug 24.
7
Diverse functions of WD40 repeat proteins in histone recognition.
Genes Dev. 2008 May 15;22(10):1265-8. doi: 10.1101/gad.1676208.
8
Genetic control of muscle development: learning from Drosophila.
J Muscle Res Cell Motil. 2007;28(7-8):397-407. doi: 10.1007/s10974-008-9133-1. Epub 2008 Mar 18.
9
Wing vein patterning in Drosophila and the analysis of intercellular signaling.
Annu Rev Cell Dev Biol. 2007;23:293-319. doi: 10.1146/annurev.cellbio.23.090506.123606.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验