Fernandes J, Celniker S E, Lewis E B, VijayRaghavan K
Molecular Biology Unit, Tata Institute of Fundamental Research, Bombay, India.
Curr Biol. 1994 Nov 1;4(11):957-64. doi: 10.1016/s0960-9822(00)00219-0.
In the fruitfly Drosophila melanogaster, segment identity is specified by the homoeotic selector genes of the bithorax and Antennapedia complexes. The functions of these genes in the segmental specification of the Drosophila ectoderm have been well studied, but their roles in muscle development have been relatively poorly investigated. Recent experiments have strongly suggested that homeotic selector genes are directly involved in one aspect of mesodermal patterning during Drosophila embryogenesis. But muscle development is a complex process, requiring for its completion the correct positioning of the epidermis, the nervous system and the developing muscles in a segment-specific manner. Many aspects of homeotic selector gene function in this process remain to be understood.
In flies that are homozygous for three mutant alleles (anterobithorax, bithorax3, postbithorax) of the Ultrabithorax gene, the third thoracic segment (T3) is transformed towards the second (T2). The adults have two pairs of wings, but the homeotically transformed T3 (HT3) has only rudimentary indirect flight muscles. We used the 'four-winged' fly to study the role of homeotic selector genes in the development of the indirect flight muscles, which we classify into four 'events'. First, the determination of the segment-specific pattern of myoblasts in the larval thorax; second, the specific pattern of migration of myoblasts during metamorphosis; third, the fusion of myoblasts to form adult indirect flight muscles and fourth, the development of the branching pattern of adult motor innervation. Our study shows that the segmental identity of the epidermis determines the segment-specific pattern and number of myoblasts on the larval discs, and the pattern of their migration during metamorphosis. The segmental identity of the mesoderm, however, is crucial for the fusion of myoblasts to form indirect flight muscles, and also influences the branching pattern of innervation of indirect flight muscles.
Segmental information expressed in the ectoderm, and the autonomous function of homeotic selector genes in the mesoderm, are both required for the complete development of indirect flight muscles.
在果蝇黑腹果蝇中,体节身份由双胸复合体和触角足复合体的同源异型选择基因决定。这些基因在果蝇外胚层体节特化中的功能已得到充分研究,但它们在肌肉发育中的作用研究相对较少。最近的实验强烈表明,同源异型选择基因直接参与果蝇胚胎发育过程中中胚层模式形成的一个方面。但是肌肉发育是一个复杂的过程,需要表皮、神经系统和发育中的肌肉以体节特异性方式正确定位才能完成。同源异型选择基因在此过程中的功能还有许多方面有待了解。
在超双胸基因的三个突变等位基因(前双胸、双胸3、后双胸)纯合的果蝇中,第三胸节(T3)向第二胸节(T2)转变。成虫有两对翅膀,但同源异型转变的T3(HT3)只有退化的间接飞行肌。我们利用“四翅”果蝇研究同源异型选择基因在间接飞行肌发育中的作用,我们将其发育分为四个“事件”。第一,幼虫胸部成肌细胞体节特异性模式的确定;第二,变态过程中成肌细胞迁移的特定模式;第三,成肌细胞融合形成成虫间接飞行肌;第四,成虫运动神经支配分支模式的发育。我们的研究表明,表皮的体节身份决定了幼虫盘上成肌细胞的体节特异性模式和数量,以及它们在变态过程中的迁移模式。然而,中胚层的体节身份对于成肌细胞融合形成间接飞行肌至关重要,并且还影响间接飞行肌神经支配的分支模式。
外胚层中表达的体节信息以及中胚层中同源异型选择基因的自主功能,都是间接飞行肌完全发育所必需的。