Department of Biology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States.
Biochemistry. 2013 Oct 15;52(41):7184-95. doi: 10.1021/bi400560p. Epub 2013 Oct 1.
The ubihydroquinone:cytochrome c oxidoreductase, or cytochrome bc1, is central to the production of ATP by oxidative phosphorylation and photophosphorylation in many organisms. Its three-dimensional structure depicts it as a homodimer with each monomer composed of the Fe-S protein, cytochrome b, and cytochrome c1 subunits. Recent genetic approaches successfully produced heterodimeric variants of this enzyme, providing insights into its mechanism of function. However, these experimental setups are inherently prone to genetic rearrangements as they carry repeated copies of cytochrome bc1 structural genes. Duplications present on a single replicon (one-plasmid system) or a double replicon (two-plasmid system) could yield heterogeneous populations via homologous recombination or other genetic events at different frequencies, especially under selective growth conditions. In this work, we assessed the origins and frequencies of genetic variations encountered in these systems and describe an improved variant of the two-plasmid system. We found that use of a recombination-deficient background (recA) minimizes spontaneous formation of co-integrant plasmids and renders the homologous recombination within the cytochrome b gene copies inconsequential. On the basis of the data, we conclude that both the newly improved RecA-deficient and the previously used RecA-proficient two-plasmid systems reliably produce native and mutant heterodimeric cytochrome bc1 variants. The two-plasmid system developed here might contribute to the study of "mitochondrial heteroplasmy"-like heterogeneous states in model bacteria (e.g., Rhodobacter species) suitable for bioenergetics studies. In the following paper (DOI 10.1021/bi400561e), we describe the use of the two-plasmid system to produce and characterize, in membranes and in purified states, an active heterodimeric cytochrome bc1 variant with unusual intermonomer electron transfer properties.
细胞色素 c 氧化还原酶,或细胞色素 bc1,是许多生物体氧化磷酸化和光合磷酸化产生 ATP 的核心。其三维结构将其描绘为同源二聚体,每个单体由 Fe-S 蛋白、细胞色素 b 和细胞色素 c1 亚基组成。最近的遗传方法成功地产生了该酶的杂二聚体变体,为其功能机制提供了深入了解。然而,这些实验设置本质上容易发生遗传重排,因为它们携带细胞色素 bc1 结构基因的重复副本。在单个复制子(一个质粒系统)或双复制子(两个质粒系统)上存在的重复可能会通过同源重组或其他遗传事件以不同的频率产生异质群体,尤其是在选择性生长条件下。在这项工作中,我们评估了这些系统中遇到的遗传变异的来源和频率,并描述了改进的双质粒系统变体。我们发现,使用重组缺陷背景(recA)可最大程度地减少共整合质粒的自发形成,并使细胞色素 b 基因拷贝内的同源重组变得无关紧要。根据这些数据,我们得出结论,新改进的 recA 缺陷型和以前使用的 recA 有效型双质粒系统都可可靠地产生天然和突变的杂二聚体细胞色素 bc1 变体。这里开发的双质粒系统可能有助于研究模型细菌(例如,红杆菌属)中的“线粒体异质性”样异质状态,这些细菌适合进行生物能量学研究。在接下来的论文(DOI 10.1021/bi400561e)中,我们描述了使用双质粒系统在膜中和纯态下产生和表征具有异常单体间电子传递特性的活性杂二聚体细胞色素 bc1 变体。