Suppr超能文献

体温模式作为无发热成人重症监护病房患者医院获得性脓毒症的预测指标:一项病例对照研究。

Body temperature patterns as a predictor of hospital-acquired sepsis in afebrile adult intensive care unit patients: a case-control study.

作者信息

Drewry Anne M, Fuller Brian M, Bailey Thomas C, Hotchkiss Richard S

出版信息

Crit Care. 2013 Sep 12;17(5):R200. doi: 10.1186/cc12894.

Abstract

INTRODUCTION

Early treatment of sepsis improves survival, but early diagnosis of hospital-acquired sepsis, especially in critically ill patients, is challenging. Evidence suggests that subtle changes in body temperature patterns may be an early indicator of sepsis, but data is limited. The aim of this study was to examine whether abnormal body temperature patterns, as identified by visual examination, could predict the subsequent diagnosis of sepsis in afebrile critically ill patients.

METHODS

Retrospective case-control study of 32 septic and 29 non-septic patients in an adult medical and surgical ICU. Temperature curves for the period starting 72 hours and ending 8 hours prior to the clinical suspicion of sepsis (for septic patients) and for the 72-hour period prior to discharge from the ICU (for non-septic patients) were rated as normal or abnormal by seven blinded physicians. Multivariable logistic regression was used to compare groups in regard to maximum temperature, minimum temperature, greatest change in temperature in any 24-hour period, and whether the majority of evaluators rated the curve to be abnormal.

RESULTS

Baseline characteristics of the groups were similar except the septic group had more trauma patients (31.3% vs. 6.9%, p = .02) and more patients requiring mechanical ventilation (75.0% vs. 41.4%, p = .008). Multivariable logistic regression to control for baseline differences demonstrated that septic patients had significantly larger temperature deviations in any 24-hour period compared to control patients (1.5°C vs. 1.1°C, p = .02). An abnormal temperature pattern was noted by a majority of the evaluators in 22 (68.8%) septic patients and 7 (24.1%) control patients (adjusted OR 4.43, p = .017). This resulted in a sensitivity of 0.69 (95% CI [confidence interval] 0.50, 0.83) and specificity of 0.76 (95% CI 0.56, 0.89) of abnormal temperature curves to predict sepsis. The median time from the temperature plot to the first culture was 9.40 hours (IQR [inter-quartile range] 8.00, 18.20) and to the first dose of antibiotics was 16.90 hours (IQR 8.35, 34.20).

CONCLUSIONS

Abnormal body temperature curves were predictive of the diagnosis of sepsis in afebrile critically ill patients. Analysis of temperature patterns, rather than absolute values, may facilitate decreased time to antimicrobial therapy.

摘要

引言

脓毒症的早期治疗可提高生存率,但医院获得性脓毒症的早期诊断具有挑战性,尤其是在重症患者中。有证据表明,体温模式的细微变化可能是脓毒症的早期指标,但数据有限。本研究的目的是探讨通过视觉检查确定的异常体温模式是否能预测无发热重症患者随后的脓毒症诊断。

方法

对一家成人内科和外科重症监护病房的32例脓毒症患者和29例非脓毒症患者进行回顾性病例对照研究。7名盲法医生将脓毒症临床怀疑前72小时至8小时(脓毒症患者)以及重症监护病房出院前72小时(非脓毒症患者)的体温曲线评定为正常或异常。采用多变量逻辑回归比较两组在最高体温、最低体温、任何24小时内最大体温变化以及大多数评估者是否将曲线评定为异常方面的情况。

结果

除脓毒症组创伤患者更多(31.3%对6.9%,p = 0.02)以及需要机械通气的患者更多(75.0%对41.4%,p = 0.008)外,两组的基线特征相似。用于控制基线差异的多变量逻辑回归显示,与对照组患者相比,脓毒症患者在任何24小时内的体温偏差显著更大(1.5°C对1.1°C,p = 0.02)。22例(68.8%)脓毒症患者和7例(24.1%)对照患者中,大多数评估者注意到异常体温模式(调整后的比值比为4.43,p = 0.017)。这导致异常体温曲线预测脓毒症的敏感性为0.69(95%置信区间[0.50, 0.83]),特异性为0.76(95%置信区间[0.56, 0.89])。从体温图到首次培养的中位时间为9.40小时(四分位间距[8.00, 18.20]),到首次使用抗生素的中位时间为16.90小时(四分位间距[8.35, 34.20])。

结论

异常体温曲线可预测无发热重症患者的脓毒症诊断。分析体温模式而非绝对值可能有助于缩短抗菌治疗时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e77d/3906745/148c155ec455/cc12894-2.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验