Suppr超能文献

用于重建 3D 形状的正弦图多边形化器。

The sinogram polygonizer for reconstructing 3D shapes.

机构信息

The University of Tokyo, Meguro-ku.

出版信息

IEEE Trans Vis Comput Graph. 2013 Nov;19(11):1911-22. doi: 10.1109/TVCG.2013.87.

Abstract

This paper proposes a novel approach, the sinogram polygonizer, for directly reconstructing 3D shapes from sinograms (i.e., the primary output from X-ray computed tomography (CT) scanners consisting of projection image sequences of an object shown from different viewing angles). To obtain a polygon mesh approximating the surface of a scanned object, a grid-based isosurface polygonizer, such as Marching Cubes, has been conventionally applied to the CT volume reconstructed from a sinogram. In contrast, the proposed method treats CT values as a continuous function and directly extracts a triangle mesh based on tetrahedral mesh deformation. This deformation involves quadratic error metric minimization and optimal Delaunay triangulation for the generation of accurate, high-quality meshes. Thanks to the analytical gradient estimation of CT values, sharp features are well approximated, even though the generated mesh is very coarse. Moreover, this approach eliminates aliasing artifacts on triangle meshes.

摘要

本文提出了一种新颖的方法,即正弦图多边形化,用于直接从正弦图(即 X 射线计算机断层扫描(CT)扫描仪的主要输出,由从不同视角显示的物体的投影图像序列组成)重建 3D 形状。为了获得近似于扫描物体表面的多边形网格,传统上会将基于网格的等体积多边形化方法(如 Marching Cubes)应用于从正弦图重建的 CT 体。相比之下,所提出的方法将 CT 值视为连续函数,并直接基于四面体网格变形提取三角网格。这种变形涉及二次误差度量最小化和最优的 Delaunay 三角剖分,以生成准确、高质量的网格。由于 CT 值的解析梯度估计,即使生成的网格非常粗糙,也能很好地逼近尖锐特征。此外,该方法消除了三角网格上的混叠伪影。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验