Suppr超能文献

直接心脏重编程:从发育生物学到心脏再生。

Direct cardiac reprogramming: from developmental biology to cardiac regeneration.

机构信息

From the McAllister Heart Institute, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill.

出版信息

Circ Res. 2013 Sep 13;113(7):915-21. doi: 10.1161/CIRCRESAHA.112.300625.

Abstract

Heart disease affects millions worldwide and is a progressive condition involving loss of cardiomyocytes. The human heart has limited endogenous regenerative capacity and is thus an important target for novel regenerative medicine approaches. Although cell-based regenerative therapies hold promise, cellular reprogramming of endogenous cardiac fibroblasts, which represent more than half of the cells in the mammalian heart, may be an attractive alternative strategy for regenerating cardiac muscle. Recent advances leveraging years of developmental biology point to the feasibility of generating de novo cardiomyocyte-like cells from terminally differentiated nonmyocytes in the heart in situ after ischemic damage. Here, we review the progress in cardiac reprogramming methods and consider the opportunities and challenges that lie ahead in refining this technology for regenerative medicine.

摘要

心脏病影响着全球数百万人,是一种涉及心肌细胞损失的进行性疾病。人类心脏的内源性再生能力有限,因此是新型再生医学方法的重要目标。尽管基于细胞的再生疗法具有广阔的前景,但对代表哺乳动物心脏中一半以上细胞的内源性心肌成纤维细胞进行细胞重编程,可能是一种有吸引力的替代策略,用于再生心肌。近年来,借助多年的发育生物学研究进展,人们发现,在缺血性损伤后,有可能从心脏中终末分化的非心肌细胞原位产生新的心肌细胞样细胞。在这里,我们回顾了心脏重编程方法的进展,并考虑了在为再生医学完善这项技术方面所面临的机遇和挑战。

相似文献

1
Direct cardiac reprogramming: from developmental biology to cardiac regeneration.
Circ Res. 2013 Sep 13;113(7):915-21. doi: 10.1161/CIRCRESAHA.112.300625.
2
Direct Cardiac Reprogramming for Cardiovascular Regeneration and Differentiation.
Keio J Med. 2020 Sep 25;69(3):49-58. doi: 10.2302/kjm.2019-0008-OA. Epub 2020 Jan 9.
3
Recent advances in direct cardiac reprogramming.
Curr Opin Genet Dev. 2015 Oct;34:77-81. doi: 10.1016/j.gde.2015.09.004. Epub 2015 Oct 24.
4
In vivo reprogramming as a new approach to cardiac regenerative therapy.
Semin Cell Dev Biol. 2022 Feb;122:21-27. doi: 10.1016/j.semcdb.2021.06.019. Epub 2021 Jun 29.
5
Heart regeneration using reprogramming technology.
Proc Jpn Acad Ser B Phys Biol Sci. 2013;89(3):118-28. doi: 10.2183/pjab.89.118.
6
Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications.
Circ Res. 2015 Apr 10;116(8):1378-91. doi: 10.1161/CIRCRESAHA.116.305374.
8
Partial reprogramming as a therapeutic approach for heart disease: A state-of-the-art review.
J Cell Biochem. 2019 Sep;120(9):14247-14261. doi: 10.1002/jcb.28900. Epub 2019 May 12.

引用本文的文献

1
Myocardial Recovery versus Myocardial Regeneration: Mechanisms and Therapeutic Modulation.
Methodist Debakey Cardiovasc J. 2024 Aug 20;20(4):31-41. doi: 10.14797/mdcvj.1400. eCollection 2024.
2
Novel Approaches to Program Cells to Differentiate into Cardiomyocytes in Myocardial Regeneration.
Rev Cardiovasc Med. 2022 Nov 30;23(12):392. doi: 10.31083/j.rcm2312392. eCollection 2022 Dec.
4
Stem Cell Therapy against Ischemic Heart Disease.
Int J Mol Sci. 2024 Mar 28;25(7):3778. doi: 10.3390/ijms25073778.
5
Modifying miRs for effective reprogramming of fibroblasts to cardiomyocytes.
Mol Ther Nucleic Acids. 2024 Feb 28;35(2):102160. doi: 10.1016/j.omtn.2024.102160. eCollection 2024 Jun 11.
7
Light Emitting Diodes Irradiation Regulates miRNA-877-3p to Promote Cardiomyocyte Proliferation.
Int J Med Sci. 2022 Jul 11;19(8):1254-1264. doi: 10.7150/ijms.70743. eCollection 2022.
9
miRNA in cardiac development and regeneration.
Cell Regen. 2021 Jun 1;10(1):14. doi: 10.1186/s13619-021-00077-5.
10
Regulation of cardiomyocyte fate plasticity: a key strategy for cardiac regeneration.
Signal Transduct Target Ther. 2021 Jan 27;6(1):31. doi: 10.1038/s41392-020-00413-2.

本文引用的文献

1
Functional screening identifies miRNAs inducing cardiac regeneration.
Nature. 2012 Dec 20;492(7429):376-81. doi: 10.1038/nature11739. Epub 2012 Dec 5.
2
Mammalian heart renewal by pre-existing cardiomyocytes.
Nature. 2013 Jan 17;493(7432):433-6. doi: 10.1038/nature11682. Epub 2012 Dec 5.
3
Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage.
Cell. 2012 Sep 28;151(1):206-20. doi: 10.1016/j.cell.2012.07.035. Epub 2012 Sep 12.
4
A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development.
Cell. 2012 Sep 28;151(1):221-32. doi: 10.1016/j.cell.2012.08.027. Epub 2012 Sep 11.
6
Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5.
Circ Res. 2012 Oct 12;111(9):1147-56. doi: 10.1161/CIRCRESAHA.112.271148. Epub 2012 Aug 28.
7
Critical factors for cardiac reprogramming.
Circ Res. 2012 Jun 22;111(1):5-8. doi: 10.1161/CIRCRESAHA.112.271452.
8
Induced pluripotent stem cells: past, present, and future.
Cell Stem Cell. 2012 Jun 14;10(6):678-684. doi: 10.1016/j.stem.2012.05.005.
9
Heart repair by reprogramming non-myocytes with cardiac transcription factors.
Nature. 2012 May 13;485(7400):599-604. doi: 10.1038/nature11139.
10
Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5.
Circ Res. 2012 Jun 22;111(1):50-5. doi: 10.1161/CIRCRESAHA.112.270264. Epub 2012 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验