Northeastern University Center for Renewable Energy Technology, Department of Chemistry and Chemical Biology, Northeastern University , 317 Egan Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States.
J Am Chem Soc. 2013 Oct 16;135(41):15443-9. doi: 10.1021/ja405149m. Epub 2013 Oct 2.
Developing nonprecious group metal based electrocatalysts for oxygen reduction is crucial for the commercial success of environmentally friendly energy conversion devices such as fuel cells and metal-air batteries. Despite recent progress, elegant bottom-up synthesis of nonprecious electrocatalysts (typically Fe-N(x)/C) is unavailable due to lack of fundamental understanding of molecular governing factors. Here, we elucidate the mechanistic origin of oxygen reduction on pyrolyzed nonprecious catalysts and identify an activity descriptor based on principles of surface science and coordination chemistry. A linear relationship, depicting the ascending portion of a volcano curve, is established between oxygen-reduction turnover number and the Lewis basicity of graphitic carbon support (accessed via C 1s photoemission spectroscopy). Tuning electron donating/withdrawing capability of the carbon basal plane, conferred upon it by the delocalized π-electrons, (i) causes a downshift of e(g)-orbitals (d(z(2))) thereby anodically shifting the metal ion's redox potential and (ii) optimizes the bond strength between the metal ion and adsorbed reaction intermediates thereby maximizing oxygen-reduction activity.
开发用于氧还原的非贵金属基电催化剂对于燃料电池和金属空气电池等环保能源转换设备的商业成功至关重要。尽管最近取得了进展,但由于缺乏对分子控制因素的基本理解,优雅的基于自下而上的非贵金属电催化剂(通常为 Fe-N(x)/C)合成仍然无法实现。在这里,我们阐明了热解非贵金属催化剂上氧还原的机理起源,并根据表面科学和配位化学原理确定了一个活性描述符。通过 C 1s 光电子能谱法(可访问石墨碳载体的路易斯碱性),建立了氧还原周转数与石墨碳载体路易斯碱性之间的线性关系(描绘了火山曲线的上升部分)。通过离域π电子赋予碳基面供电子/吸电子能力,(i)导致 e(g)-轨道(d(z(2)))向下位移,从而使金属离子的氧化还原电位正向移动,(ii)优化金属离子与吸附反应中间体之间的键强度,从而最大限度地提高氧还原活性。