Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, University of Chinese Academy of Sciences , Beijing 100190, China.
State Key Laboratory of Power Transmission Equipment and System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400044, China.
J Am Chem Soc. 2016 Mar 16;138(10):3570-8. doi: 10.1021/jacs.6b00757. Epub 2016 Mar 4.
Understanding the origin of high activity of Fe-N-C electrocatalysts in oxygen reduction reaction (ORR) is critical but still challenging for developing efficient sustainable nonprecious metal catalysts in fuel cells and metal-air batteries. Herein, we developed a new highly active Fe-N-C ORR catalyst containing Fe-N(x) coordination sites and Fe/Fe3C nanocrystals (Fe@C-FeNC), and revealed the origin of its activity by intensively investigating the composition and the structure of the catalyst and their correlations with the electrochemical performance. The detailed analyses unambiguously confirmed the coexistence of Fe/Fe3C nanocrystals and Fe-N(x) in the best catalyst. A series of designed experiments disclosed that (1) N-doped carbon substrate, Fe/Fe3C nanocrystals or Fe-N(x) themselves did not deliver the high activity; (2) the catalysts with both Fe/Fe3C nanocrystals and Fe-N(x) exhibited the high activity; (3) the higher content of Fe-N(x) gave the higher activity; (4) the removal of Fe/Fe3C nanocrystals severely degraded the activity; (5) the blocking of Fe-N(x) downgraded the activity and the recovery of the blocked Fe-N(x) recovered the activity. These facts supported that the high ORR activity of the Fe@C-FeNC electrocatalysts should be ascribed to that Fe/Fe3C nanocrystals boost the activity of Fe-N(x). The coexistence of high content of Fe-N(x) and sufficient metallic iron nanoparticles is essential for the high ORR activity. DFT calculation corroborated this conclusion by indicating that the interaction between metallic iron and Fe-N4 coordination structure favored the adsorption of oxygen molecule. These new findings open an avenue for the rational design and bottom-up synthesis of low-cost highly active ORR electrocatalysts.
了解在燃料电池和金属空气电池中开发高效可持续的非贵金属催化剂时,氧还原反应(ORR)中高活性的 Fe-N-C 电催化剂的起源至关重要,但仍具有挑战性。在此,我们开发了一种新型的含有 Fe-N(x)配位位点和 Fe/Fe3C 纳米晶(Fe@C-FeNC)的高活性 Fe-N-C ORR 催化剂,并通过深入研究催化剂的组成和结构及其与电化学性能的相关性来揭示其活性的起源。详细的分析明确证实了在最佳催化剂中同时存在 Fe/Fe3C 纳米晶和 Fe-N(x)。一系列设计实验揭示了:(1)氮掺杂碳基底、Fe/Fe3C 纳米晶或 Fe-N(x)本身并不能提供高活性;(2)同时具有 Fe/Fe3C 纳米晶和 Fe-N(x)的催化剂表现出高活性;(3)Fe-N(x)含量越高,活性越高;(4)去除 Fe/Fe3C 纳米晶会严重降低活性;(5)阻断 Fe-N(x)会降低活性,而被阻断的 Fe-N(x)的恢复则恢复了活性。这些事实表明,Fe@C-FeNC 电催化剂的高 ORR 活性应归因于 Fe/Fe3C 纳米晶提高了 Fe-N(x)的活性。高含量的 Fe-N(x)和足够的金属铁纳米粒子的共存对于高 ORR 活性是必不可少的。DFT 计算证实了这一结论,表明金属铁与 Fe-N4 配位结构之间的相互作用有利于氧分子的吸附。这些新发现为合理设计和自下而上合成低成本高活性 ORR 电催化剂开辟了一条途径。