Suppr超能文献

着丝粒功能和染色体分离依赖于芽殖酵母组蛋白 H3 和 H4 中的关键残基。

Kinetochore function and chromosome segregation rely on critical residues in histones H3 and H4 in budding yeast.

机构信息

Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.

出版信息

Genetics. 2013 Nov;195(3):795-807. doi: 10.1534/genetics.113.152082. Epub 2013 Sep 13.

Abstract

Accurate chromosome segregation requires that sister kinetochores biorient and attach to microtubules from opposite poles. Kinetochore biorientation relies on the underlying centromeric chromatin, which provides a platform to assemble the kinetochore and to recruit the regulatory factors that ensure the high fidelity of this process. To identify the centromeric chromatin determinants that contribute to chromosome segregation, we performed two complementary unbiased genetic screens using a library of budding yeast mutants in every residue of histone H3 and H4. In one screen, we identified mutants that lead to increased loss of a nonessential chromosome. In the second screen, we isolated mutants whose viability depends on a key regulator of biorientation, the Aurora B protein kinase. Nine mutants were common to both screens and exhibited kinetochore biorientation defects. Four of the mutants map near the unstructured nucleosome entry site, and their genetic interaction with reduced IPL1 can be suppressed by increasing the dosage of SGO1, a key regulator of biorientation. In addition, the composition of purified kinetochores was altered in six of the mutants. Together, this work identifies previously unknown histone residues involved in chromosome segregation and lays the foundation for future studies on the role of the underlying chromatin structure in chromosome segregation.

摘要

准确的染色体分离需要姐妹动粒的双定向和与来自相对极的微管连接。动粒的双定向依赖于基础着丝粒染色质,它提供了一个平台来组装动粒,并招募保证这个过程高保真度的调节因子。为了鉴定有助于染色体分离的着丝粒染色质决定因素,我们使用组蛋白 H3 和 H4 每个残基的芽殖酵母突变体文库进行了两次互补的无偏遗传筛选。在一个筛选中,我们鉴定了导致非必需染色体丢失增加的突变体。在第二个筛选中,我们分离了其存活依赖于双定向关键调节剂 Aurora B 蛋白激酶的突变体。有九个突变体在两个筛选中都很常见,表现出动粒的双定向缺陷。其中四个突变体定位于无规卷曲核小体进入位点附近,并且它们与 IPL1 减少的遗传相互作用可以通过增加 SGO1 的剂量来抑制,SGO1 是双定向的关键调节剂。此外,六个突变体中的纯化动粒的组成发生了改变。总的来说,这项工作鉴定了以前未知的参与染色体分离的组蛋白残基,并为未来研究基础染色质结构在染色体分离中的作用奠定了基础。

相似文献

7
Histone H3 localizes to the centromeric DNA in budding yeast.组蛋白 H3 在芽殖酵母中定位于着丝粒 DNA。
PLoS Genet. 2012 May;8(5):e1002739. doi: 10.1371/journal.pgen.1002739. Epub 2012 May 31.
8
Protein kinases in mitotic phosphorylation of budding yeast CENP-A.有丝分裂磷酸化芽殖酵母 CENP-A 的蛋白激酶。
Curr Genet. 2019 Dec;65(6):1325-1332. doi: 10.1007/s00294-019-00997-5. Epub 2019 May 22.
10
Transcription destabilizes centromere function.转录使着丝粒功能不稳定。
Biochem Biophys Res Commun. 2022 Jan 1;586:150-156. doi: 10.1016/j.bbrc.2021.11.077. Epub 2021 Nov 25.

引用本文的文献

4
Direct assessment of histone function using histone replacement.使用组蛋白替换直接评估组蛋白功能。
Trends Biochem Sci. 2023 Jan;48(1):53-70. doi: 10.1016/j.tibs.2022.06.010. Epub 2022 Jul 16.

本文引用的文献

2
Temporal control of epigenetic centromere specification.表观遗传着丝粒特化的时间控制。
Chromosome Res. 2012 Jul;20(5):481-92. doi: 10.1007/s10577-012-9291-2.
3
Putting CENP-A in its place.将 CENP-A 置于其位置。
Cell Mol Life Sci. 2013 Feb;70(3):387-406. doi: 10.1007/s00018-012-1048-8. Epub 2012 Jun 23.
4
Histone H3 localizes to the centromeric DNA in budding yeast.组蛋白 H3 在芽殖酵母中定位于着丝粒 DNA。
PLoS Genet. 2012 May;8(5):e1002739. doi: 10.1371/journal.pgen.1002739. Epub 2012 May 31.
5
Tension-dependent nucleosome remodeling at the pericentromere in yeast.酵母着丝粒周围依赖张力的核小体重塑。
Mol Biol Cell. 2012 Jul;23(13):2560-70. doi: 10.1091/mbc.E11-07-0651. Epub 2012 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验