Suppr超能文献

一种农药的机制毒理学和预测毒理学的计算方法。

A computational approach to mechanistic and predictive toxicology of pesticides.

机构信息

Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;

出版信息

ALTEX. 2014;31(1):11-22. doi: 10.14573/altex.1304241. Epub 2013 Sep 14.

Abstract

Emerging challenges of managing and interpreting large amounts of complex biological data have given rise to the growing field of computational biology. We investigated the applicability of an integrated systems toxicology approach on five selected pesticides to get an overview of their modes of action in humans, to group them according to their modes of action, and to hypothesize on their potential effects on human health. We extracted human proteins associated to prochloraz, tebuconazole, epoxiconazole, procymidone, and mancozeb and enriched each protein set by using a high confidence human protein interactome. Then, we explored modes of action of the chemicals, by integrating protein-disease information to the resulting protein networks. The dominating human adverse effects affected were reproductive disorders followed by adrenal diseases. Our results indicated that prochloraz, tebuconazole, and procymidone exerted their effects mainly via interference with steroidogenesis and nuclear receptors. Prochloraz was associated to a large number of human diseases, and together with tebuconazole showed several significant associations to Testicular Dysgenesis Syndrome. Mancozeb showed a differential mode of action, involving inflammatory processes. This method provides an efficient way of overviewing data and grouping chemicals according to their mode of action and potential human adverse effects. Such information is valuable when dealing with predictions of mixture effects of chemicals and may contribute to the development of adverse outcome pathways.

摘要

管理和解释大量复杂生物数据的新挑战催生了计算生物学这一不断发展的领域。我们研究了一种综合系统毒理学方法在五种选定农药上的适用性,以了解它们在人类中的作用模式,根据它们的作用模式对它们进行分组,并推测它们对人类健康的潜在影响。我们提取了与百菌清、戊唑醇、环氧氯丙烷、丙环唑和代森锰锌相关的人类蛋白,并使用高可信度的人类蛋白质相互作用组对每个蛋白质集进行了富集。然后,我们通过将蛋白质-疾病信息整合到所得的蛋白质网络中,探索了这些化学物质的作用模式。受影响的主要人类不良效应是生殖障碍,其次是肾上腺疾病。我们的结果表明,百菌清、戊唑醇和丙环唑主要通过干扰类固醇生成和核受体发挥作用。百菌清与大量人类疾病相关,与戊唑醇一起对睾丸发育不良综合征显示出几个显著的关联。代森锰锌表现出不同的作用模式,涉及炎症过程。该方法为根据作用模式和潜在人类不良效应对数据进行概述和对化学品进行分组提供了一种有效的方法。在处理化学品混合物效应的预测时,此类信息非常有价值,并可能有助于开发不良结局途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验