Suppr超能文献

多读者多病例放射影像学数据的边缘均值方差分析方法。

A marginal-mean ANOVA approach for analyzing multireader multicase radiological imaging data.

机构信息

Departments of Radiology and Biostatistics, The University of Iowa, 3710 Medical Laboratories, 200 Hawkins Drive, Iowa City, IA 52242-1077, U.S.A.; Comprehensive Access and Delivery Research and Evaluation (CADRE) Center, Iowa City VA Health Care System, IA 52242-1077, U.S.A.

出版信息

Stat Med. 2014 Jan 30;33(2):330-60. doi: 10.1002/sim.5926. Epub 2013 Aug 23.

Abstract

The correlated-error ANOVA method proposed by Obuchowski and Rockette (OR) has been a useful procedure for analyzing reader-performance outcomes, such as the area under the receiver-operating-characteristic curve, resulting from multireader multicase radiological imaging data. This approach, however, has only been formally derived for the test-by-reader-by-case factorial study design. In this paper, I show that the OR model can be viewed as a marginal-mean ANOVA model. Viewing the OR model within this marginal-mean ANOVA framework is the basis for the marginal-mean ANOVA approach, the topic of this paper. This approach (1) provides an intuitive motivation for the OR model, including its covariance-parameter constraints; (2) provides easy derivations of OR test statistics and parameter estimates, as well as their distributions and confidence intervals; and (3) allows for easy generalization of the OR procedure to other study designs. In particular, I show how one can easily derive OR-type analysis formulas for any balanced study design by following an algorithm that only requires an understanding of conventional ANOVA methods.

摘要

Obuchowski 和 Rockette(OR)提出的相关误差方差分析方法(ANOVA)一直是一种用于分析读者绩效结果的有用方法,例如多读者多病例放射影像学数据的受试者工作特征曲线下面积。然而,这种方法仅针对测试者-读者-病例析因研究设计进行了正式推导。在本文中,我表明 OR 模型可以被视为边缘均值方差分析模型。在这个边缘均值方差分析框架内观察 OR 模型是边缘均值方差分析方法的基础,也是本文的主题。这种方法:(1)为 OR 模型提供了直观的动机,包括其协方差参数约束;(2)提供了 OR 检验统计量和参数估计的简便推导,以及它们的分布和置信区间;(3)允许将 OR 程序轻松推广到其他研究设计。具体来说,我通过遵循仅需要对传统方差分析方法有一定了解的算法,展示了如何轻松地为任何平衡研究设计推导出 OR 型分析公式。

相似文献

6
Multireader sample size program for diagnostic studies: demonstration and methodology.诊断研究的多读者样本量规划:示例与方法
J Med Imaging (Bellingham). 2018 Oct;5(4):045503. doi: 10.1117/1.JMI.5.4.045503. Epub 2018 Nov 30.

引用本文的文献

9
Virtual clinical trials in medical imaging: a review.医学成像中的虚拟临床试验:综述
J Med Imaging (Bellingham). 2020 Jul;7(4):042805. doi: 10.1117/1.JMI.7.4.042805. Epub 2020 Apr 11.

本文引用的文献

6
Multireader multicase variance analysis for binary data.二元数据的多读者多病例方差分析。
J Opt Soc Am A Opt Image Sci Vis. 2007 Dec;24(12):B70-80. doi: 10.1364/josaa.24.000b70.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验