Suppr超能文献

多读者多病例放射影像学数据的边缘均值方差分析方法。

A marginal-mean ANOVA approach for analyzing multireader multicase radiological imaging data.

机构信息

Departments of Radiology and Biostatistics, The University of Iowa, 3710 Medical Laboratories, 200 Hawkins Drive, Iowa City, IA 52242-1077, U.S.A.; Comprehensive Access and Delivery Research and Evaluation (CADRE) Center, Iowa City VA Health Care System, IA 52242-1077, U.S.A.

出版信息

Stat Med. 2014 Jan 30;33(2):330-60. doi: 10.1002/sim.5926. Epub 2013 Aug 23.

Abstract

The correlated-error ANOVA method proposed by Obuchowski and Rockette (OR) has been a useful procedure for analyzing reader-performance outcomes, such as the area under the receiver-operating-characteristic curve, resulting from multireader multicase radiological imaging data. This approach, however, has only been formally derived for the test-by-reader-by-case factorial study design. In this paper, I show that the OR model can be viewed as a marginal-mean ANOVA model. Viewing the OR model within this marginal-mean ANOVA framework is the basis for the marginal-mean ANOVA approach, the topic of this paper. This approach (1) provides an intuitive motivation for the OR model, including its covariance-parameter constraints; (2) provides easy derivations of OR test statistics and parameter estimates, as well as their distributions and confidence intervals; and (3) allows for easy generalization of the OR procedure to other study designs. In particular, I show how one can easily derive OR-type analysis formulas for any balanced study design by following an algorithm that only requires an understanding of conventional ANOVA methods.

摘要

Obuchowski 和 Rockette(OR)提出的相关误差方差分析方法(ANOVA)一直是一种用于分析读者绩效结果的有用方法,例如多读者多病例放射影像学数据的受试者工作特征曲线下面积。然而,这种方法仅针对测试者-读者-病例析因研究设计进行了正式推导。在本文中,我表明 OR 模型可以被视为边缘均值方差分析模型。在这个边缘均值方差分析框架内观察 OR 模型是边缘均值方差分析方法的基础,也是本文的主题。这种方法:(1)为 OR 模型提供了直观的动机,包括其协方差参数约束;(2)提供了 OR 检验统计量和参数估计的简便推导,以及它们的分布和置信区间;(3)允许将 OR 程序轻松推广到其他研究设计。具体来说,我通过遵循仅需要对传统方差分析方法有一定了解的算法,展示了如何轻松地为任何平衡研究设计推导出 OR 型分析公式。

相似文献

1
A marginal-mean ANOVA approach for analyzing multireader multicase radiological imaging data.
Stat Med. 2014 Jan 30;33(2):330-60. doi: 10.1002/sim.5926. Epub 2013 Aug 23.
5
Multi-reader ROC studies with split-plot designs: a comparison of statistical methods.
Acad Radiol. 2012 Dec;19(12):1508-17. doi: 10.1016/j.acra.2012.09.012.
6
Multireader sample size program for diagnostic studies: demonstration and methodology.
J Med Imaging (Bellingham). 2018 Oct;5(4):045503. doi: 10.1117/1.JMI.5.4.045503. Epub 2018 Nov 30.
9
Power estimation for multireader ROC methods an updated and unified approach.
Acad Radiol. 2011 Feb;18(2):129-42. doi: 10.1016/j.acra.2010.09.007.

引用本文的文献

3
Roe and Metz identical-test simulation model for validating multi-reader methods of analysis for comparing different radiologic imaging modalities.
J Med Imaging (Bellingham). 2023 Feb;10(Suppl 1):S11916. doi: 10.1117/1.JMI.10.S1.S11916. Epub 2023 Jul 5.
8
Estimating latent reader-performance variability using the Obuchowski-Rockette method.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10952. doi: 10.1117/12.2513106. Epub 2019 Mar 4.
9
Virtual clinical trials in medical imaging: a review.
J Med Imaging (Bellingham). 2020 Jul;7(4):042805. doi: 10.1117/1.JMI.7.4.042805. Epub 2020 Apr 11.
10
Validation of mitotic cell quantification via microscopy and multiple whole-slide scanners.
Diagn Pathol. 2019 Jun 26;14(1):65. doi: 10.1186/s13000-019-0839-8.

本文引用的文献

1
Exact F Tests in an ANOVA Procedure for Dependent Observations.
Multivariate Behav Res. 1984 Oct 1;19(4):408-20. doi: 10.1207/s15327906mbr1904_3.
2
Multi-reader ROC studies with split-plot designs: a comparison of statistical methods.
Acad Radiol. 2012 Dec;19(12):1508-17. doi: 10.1016/j.acra.2012.09.012.
3
Power estimation for multireader ROC methods an updated and unified approach.
Acad Radiol. 2011 Feb;18(2):129-42. doi: 10.1016/j.acra.2010.09.007.
5
Reducing the number of reader interpretations in MRMC studies.
Acad Radiol. 2009 Feb;16(2):209-17. doi: 10.1016/j.acra.2008.05.014.
6
Multireader multicase variance analysis for binary data.
J Opt Soc Am A Opt Image Sci Vis. 2007 Dec;24(12):B70-80. doi: 10.1364/josaa.24.000b70.
7
8
One-shot estimate of MRMC variance: AUC.
Acad Radiol. 2006 Mar;13(3):353-62. doi: 10.1016/j.acra.2005.11.030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验