Suppr超能文献

针对读者数量不等的多读者多病例(MRMC)读者嵌套于测试研究设计的奥布霍夫斯基-罗凯特分析。

Obuchowski-Rockette analysis for multi-reader multi-case (MRMC) readers-nested-in-test study design with unequal numbers of readers.

作者信息

Hillis Stephen L, Soh BaoLin Pauline

机构信息

Department of Radiology, University of Iowa, Iowa City, Iowa, U.S.A.

Health and Social Sciences Cluster, Singapore Institute of Technology, SIT@Dover, 10 Dover Drive, Singapore 138683.

出版信息

Proc SPIE Int Soc Opt Eng. 2023 Feb;12467. doi: 10.1117/12.2655190. Epub 2023 Apr 3.

Abstract

The Obuchowski-Rockette method has been an important tool for analyzing multi-reader multi-case (MRMC) radiologic imaging data. Although the typical study design for such studies has been the factorial design, where each reader reads each case using each test (modality), sometimes a reader-nested-in-test design is more appropriate. We consider such an example in this talk, where 53 Australian and 15 Singaporean breast radiologists interpreted the same test in their respective locations. In this paper we show how the Obuchowski-Rockette method can be used for analysis of such data, without assuming that the number of readers is the same for each test.

摘要

奥布霍夫斯基-罗凯特方法一直是分析多读者多病例(MRMC)放射影像数据的重要工具。尽管此类研究的典型研究设计是析因设计,即每个读者使用每种检测方法(模态)阅读每个病例,但有时读者嵌套于检测方法的设计更为合适。在本次演讲中,我们将考虑这样一个例子,53名澳大利亚乳腺放射科医生和15名新加坡乳腺放射科医生在各自所在地区解读相同的检测方法。在本文中,我们展示了如何使用奥布霍夫斯基-罗凯特方法来分析此类数据,而无需假设每种检测方法的读者数量相同。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验