Frydman Halina, Gerds Thomas, Grøn Randi, Keiding Niels
Stern School of Business, New York University, New York, NY, 10012, USA.
Biom J. 2013 Nov;55(6):823-43. doi: 10.1002/bimj.201200139. Epub 2013 Sep 6.
We develop nonparametric maximum likelihood estimation for the parameters of an irreversible Markov chain on states {0,1,2} from the observations with interval censored times of 0 → 1, 0 → 2 and 1 → 2 transitions. The distinguishing aspect of the data is that, in addition to all transition times being interval censored, the times of two events (0 → 1 and 1 → 2 transitions) can be censored into the same interval. This development was motivated by a common data structure in oral health research, here specifically illustrated by the data from a prospective cohort study on the longevity of dental veneers. Using the self-consistency algorithm we obtain the maximum likelihood estimators of the cumulative incidences of the times to events 1 and 2 and of the intensity of the 1 → 2 transition. This work generalizes previous results on the estimation in an "illness-death" model from interval censored observations.
我们从0→1、0→2和1→2转移的区间删失时间观测值出发,为状态{0,1,2}上的不可逆马尔可夫链参数开发非参数极大似然估计。数据的独特之处在于,除了所有转移时间都是区间删失的之外,两个事件(0→1和1→2转移)的时间可以被删失到同一个区间。这种发展是由口腔健康研究中的一种常见数据结构推动的,这里具体以一项关于牙贴面寿命的前瞻性队列研究的数据为例进行说明。使用自一致性算法,我们获得了事件1和事件2发生时间的累积发病率以及1→2转移强度的极大似然估计。这项工作推广了先前关于区间删失观测值在“疾病 - 死亡”模型估计方面的结果。