Frydman H
New York University, New York 10012-1126,USA.
Biometrics. 1995 Jun;51(2):502-11.
The semiparametric maximum likelihood estimation is considered in a three-state duration dependent Markov process when times of the intermediate transition (e.g., onset of a disease) are interval censored and the times of transitions to an absorbing state (e.g., death) are known exactly or are right censored. It is assumed that the intensity of the transition to an absorbing state depends both on chronological time and duration in the intermediate state. De Gruttola and Lagakos (1989, Biometrics 45, 1-11) and Frydman (1992, Journal of the Royal Statistical Society, Series B 54, 853-866) discussed non-parametric estimation from the same sampling scheme under the assumption that the intensity of transition to an absorbing state depends only on the duration in the intermediate state or only on the chronological time respectively. The approach taken here generalizes, but in discrete time framework, the results from Frydman (1992). The distribution of the time to the intermediate transition is modelled nonparametrically and the intensity of onset of terminal condition semiparametrically. The algorithm is developed for the computation of the estimators. The methods are illustrated with AIDS data.
在一个三状态持续时间依赖的马尔可夫过程中考虑半参数极大似然估计,其中中间转变(如疾病发作)的时间是区间删失的,而转变到吸收状态(如死亡)的时间是确切已知的或右删失的。假定转变到吸收状态的强度既依赖于日历时间,也依赖于在中间状态的持续时间。德格鲁托拉和拉加科斯(1989年,《生物统计学》45卷,1 - 11页)以及弗里德曼(1992年,《皇家统计学会学报》,B辑54卷,853 - 866页)分别在假定转变到吸收状态的强度仅依赖于在中间状态的持续时间或仅依赖于日历时间的情况下,讨论了来自相同抽样方案的非参数估计。这里采用的方法在离散时间框架下推广了弗里德曼(1992年)的结果。中间转变时间的分布采用非参数建模,而终末状态发作强度采用半参数建模。开发了用于计算估计量的算法。用艾滋病数据对这些方法进行了说明。