Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing, China ; Graduate University of the Chinese Academy of Sciences, Beijing, China.
PLoS Genet. 2013;9(9):e1003757. doi: 10.1371/journal.pgen.1003757. Epub 2013 Sep 5.
Genome-wide gene expression profiles accumulate at an alarming rate, how to integrate these expression profiles generated by different laboratories to reverse engineer the cellular regulatory network has been a major challenge. To automatically infer gene regulatory pathways from genome-wide mRNA expression profiles before and after genetic perturbations, we introduced a new Bayesian network algorithm: Deletion Mutant Bayesian Network (DM_BN). We applied DM_BN to the expression profiles of 544 yeast single or double deletion mutants of transcription factors, chromatin remodeling machinery components, protein kinases and phosphatases in S. cerevisiae. The network inferred by this method identified causal regulatory and non-causal concurrent interactions among these regulators (genetically perturbed genes) that are strongly supported by the experimental evidence, and generated many new testable hypotheses. Compared to networks reconstructed by routine similarity measures or by alternative Bayesian network algorithms, the network inferred by DM_BN excels in both precision and recall. To facilitate its application in other systems, we packaged the algorithm into a user-friendly analysis tool that can be downloaded at http://www.picb.ac.cn/hanlab/DM_BN.html.
基因组范围的基因表达谱以惊人的速度积累,如何整合这些由不同实验室生成的表达谱,以反向工程细胞调控网络,一直是一个重大挑战。为了在遗传扰动前后从全基因组 mRNA 表达谱中自动推断基因调控途径,我们引入了一种新的贝叶斯网络算法:缺失突变贝叶斯网络(DM_BN)。我们将 DM_BN 应用于酿酒酵母转录因子、染色质重塑机制成分、蛋白激酶和磷酸酶的 544 个酵母单或双缺失突变体的表达谱。该方法推断的网络确定了这些调控因子(遗传扰动基因)之间因果调节和非因果并发相互作用,这些作用得到了实验证据的有力支持,并产生了许多新的可测试假说。与常规相似性度量或替代贝叶斯网络算法重建的网络相比,DM_BN 推断的网络在精度和召回率方面都表现出色。为了便于将其应用于其他系统,我们将该算法打包到一个用户友好的分析工具中,可在 http://www.picb.ac.cn/hanlab/DM_BN.html 下载。