Suppr超能文献

盘基网柄菌肌球蛋白尾部片段在大肠杆菌中的表达:组装和磷酸化所需的结构域

Expression of Dictyostelium myosin tail segments in Escherichia coli: domains required for assembly and phosphorylation.

作者信息

O'Halloran T J, Ravid S, Spudich J A

机构信息

Department of Cell Biology, Stanford University School of Medicine, California 94305.

出版信息

J Cell Biol. 1990 Jan;110(1):63-70. doi: 10.1083/jcb.110.1.63.

Abstract

The assembly of myosins into filaments is a property common to all conventional myosins. The ability of myosins to form filaments is conferred by the tail of the large asymmetric molecule. We are studying cloned portions of the Dictyostelium myosin gene expressed in Escherichia coli to investigate functional properties of defined segments of the myosin tail. We have focused on five segments derived from the 68-kD carboxyl-terminus of the myosin tail. These have been expressed and purified to homogeneity from E. coli, and thus the boundaries of each segment within the myosin gene and protein sequence are known. We identified an internal 34-kD segment of the tail, N-LMM-34, which is required and sufficient for assembly. This 287-amino acid domain represents the smallest tail segment purified from any myosin that is capable of forming highly ordered paracrystals characteristic of myosin. Because the assembly of Dictyostelium myosin can be regulated by phosphorylation of the heavy chain, we have studied the in vitro phosphorylation of the expressed tail segments. We have determined which segments are phosphorylated to a high level by a Dictyostelium myosin heavy chain kinase purified from developed cells. While LMM-68, the 68-kD carboxyl terminus of Dictyostelium myosin, or LMM-58, which lacks the 10-kD carboxyl terminus of LMM-68, are phosphorylated to the same extent as purified myosin, subdomains of these segments do not serve as efficient substrates for the kinase. Thus LMM-58 is one minimal substrate for efficient phosphorylation by the myosin heavy chain kinase purified from developed cells. Taken together these results identify two functional domains in Dictyostelium myosin: a 34-kD assembly domain bounded by amino acids 1533-1819 within the myosin sequence and a larger 58-kD phosphorylation domain bounded by amino acids 1533-2034 within the myosin sequence.

摘要

肌球蛋白组装成丝是所有传统肌球蛋白共有的特性。肌球蛋白形成丝的能力由大型不对称分子的尾部赋予。我们正在研究在大肠杆菌中表达的盘基网柄菌肌球蛋白基因的克隆片段,以研究肌球蛋白尾部特定片段的功能特性。我们聚焦于源自肌球蛋白尾部68-kD羧基末端的五个片段。这些片段已在大肠杆菌中表达并纯化至同质,因此肌球蛋白基因和蛋白质序列中每个片段的边界是已知的。我们鉴定出尾部的一个内部34-kD片段,即N-LMM-34,它是组装所必需且足够的。这个287个氨基酸的结构域代表了从任何能够形成肌球蛋白特有的高度有序副晶体的肌球蛋白中纯化出的最小尾部片段。由于盘基网柄菌肌球蛋白的组装可通过重链的磷酸化来调节,我们研究了表达的尾部片段的体外磷酸化。我们已经确定了哪些片段被从发育细胞中纯化的盘基网柄菌肌球蛋白重链激酶高水平磷酸化。虽然盘基网柄菌肌球蛋白的68-kD羧基末端LMM-68,或缺少LMM-68的10-kD羧基末端的LMM-58,与纯化的肌球蛋白磷酸化程度相同,但这些片段的亚结构域并不是该激酶的有效底物。因此,LMM-58是从发育细胞中纯化的肌球蛋白重链激酶进行有效磷酸化的一个最小底物。综合这些结果,确定了盘基网柄菌肌球蛋白中的两个功能结构域:一个34-kD的组装结构域,在肌球蛋白序列中由氨基酸1533 - 1819界定;一个更大的58-kD的磷酸化结构域,在肌球蛋白序列中由氨基酸1533 - 2034界定。

相似文献

2
Expression in Escherichia coli of a functional Dictyostelium myosin tail fragment.
J Cell Biol. 1987 Dec;105(6 Pt 2):2999-3005. doi: 10.1083/jcb.105.6.2999.
3
Expression and characterization of a functional myosin head fragment in Dictyostelium discoideum.
Science. 1989 Nov 3;246(4930):656-8. doi: 10.1126/science.2530629.
4
Expression of light meromyosin in Dictyostelium blocks normal myosin II function.
J Cell Biol. 1995 Aug;130(3):605-12. doi: 10.1083/jcb.130.3.605.
5
Dictyostelium myosin bipolar thick filament formation: importance of charge and specific domains of the myosin rod.
PLoS Biol. 2004 Nov;2(11):e356. doi: 10.1371/journal.pbio.0020356. Epub 2004 Oct 19.
6
Coexpression and assembly of myosin heavy chain and myosin light chain in Escherichia coli.
Proc Natl Acad Sci U S A. 1988 Oct;85(19):7270-3. doi: 10.1073/pnas.85.19.7270.
9
A 29 residue region of the sarcomeric myosin rod is necessary for filament formation.
J Mol Biol. 1997 Feb 21;266(2):317-30. doi: 10.1006/jmbi.1996.0790.
10
A structural model for phosphorylation control of Dictyostelium myosin II thick filament assembly.
J Cell Biol. 1999 Nov 29;147(5):1039-48. doi: 10.1083/jcb.147.5.1039.

引用本文的文献

1
Myosin 2 drives actin contractility in fast-crawling species outside of the amorphean lineage.
bioRxiv. 2025 May 19:2025.05.16.654244. doi: 10.1101/2025.05.16.654244.
2
14-3-3 proteins tune non-muscle myosin II assembly.
J Biol Chem. 2018 May 4;293(18):6751-6761. doi: 10.1074/jbc.M117.819391. Epub 2018 Mar 16.
3
Structural and functional insights on the Myosin superfamily.
Bioinform Biol Insights. 2012;6:11-21. doi: 10.4137/BBI.S8451. Epub 2012 Feb 1.
4
Multiple tail domain interactions stabilize nonmuscle myosin II bipolar filaments.
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):20964-9. doi: 10.1073/pnas.1007025107. Epub 2010 Nov 15.
5
Temperature dependence of myosin-II tail fragment assembly.
J Muscle Res Cell Motil. 2008;29(2-5):109-18. doi: 10.1007/s10974-008-9144-y. Epub 2008 Sep 11.
6
Fifty years of contractility research post sliding filament hypothesis.
J Muscle Res Cell Motil. 2004;25(6):475-82. doi: 10.1007/s10974-004-4239-6.
7
Dictyostelium myosin bipolar thick filament formation: importance of charge and specific domains of the myosin rod.
PLoS Biol. 2004 Nov;2(11):e356. doi: 10.1371/journal.pbio.0020356. Epub 2004 Oct 19.
8
Signaling pathways regulating Dictyostelium myosin II.
J Muscle Res Cell Motil. 2002;23(7-8):703-18. doi: 10.1023/a:1024467426244.
9
Dictyostelium and Acanthamoeba myosin II assembly domains go to the cleavage furrow of Dictyostelium myosin II-null cells.
Proc Natl Acad Sci U S A. 2003 May 27;100(11):6499-504. doi: 10.1073/pnas.0732155100. Epub 2003 May 14.

本文引用的文献

2
Electron microscopic mapping of monoclonal antibodies on the tail region of Dictyostelium myosin.
EMBO J. 1982;1(8):1017-22. doi: 10.1002/j.1460-2075.1982.tb01287.x.
4
The structure of spindle-shaped paracrystals of light meromyosin.
J Mol Biol. 1981 Feb 25;146(2):201-21. doi: 10.1016/0022-2836(81)90432-0.
5
6
Structural implications of the myosin amino acid sequence.
Annu Rev Biophys Bioeng. 1984;13:167-89. doi: 10.1146/annurev.bb.13.060184.001123.
7
Time-resolved X-ray diffraction studies on vertebrate striated muscle.
Annu Rev Biophys Bioeng. 1983;12:381-417. doi: 10.1146/annurev.bb.12.060183.002121.
8
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature. 1970 Aug 15;227(5259):680-5. doi: 10.1038/227680a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验