Department of Chemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):20964-9. doi: 10.1073/pnas.1007025107. Epub 2010 Nov 15.
Contractile force transduction by myosin II derives from its assembly into bipolar filaments. The coiled-coil tail domain of the myosin II heavy chain mediates filament assembly, although the mechanism is poorly understood. Tail domains contain an alternating electrostatic repeat, yet only a small region of the tail (termed the "assembly domain") is typically required for assembly. Using computational analysis, mutagenesis, and electron microscopy we discovered that the assembly domain does not function through self-interaction as previously thought. Rather, the assembly domain acts as a unique, positively charged interaction surface that can stably contact multiple complementary, negatively charged surfaces in the upstream tail domain. The relative affinities of the assembly domain to each complementary interaction surface sets the characteristic molecular staggers observed in myosin II filaments. Together these results explain the relationship between the charge repeat and assembly domain in stabilizing myosin bipolar filaments.
肌球蛋白 II 通过二聚体纤维的组装来传递收缩力。肌球蛋白 II 重链的卷曲螺旋尾部结构域介导纤维的组装,然而其具体机制尚不清楚。尾部结构域含有交替的静电重复序列,但通常只需要尾部的一小段区域(称为“组装结构域”)用于组装。通过计算分析、突变和电子显微镜,我们发现组装结构域并不像之前认为的那样通过自身相互作用来发挥功能。相反,组装结构域充当一个独特的正电荷相互作用表面,可以稳定地与上游尾部结构域中的多个互补的负电荷表面接触。组装结构域与每个互补相互作用表面的相对亲和力决定了在肌球蛋白 II 纤维中观察到的特征性分子交错。这些结果共同解释了电荷重复序列和组装结构域在稳定肌球蛋白二聚体纤维中的关系。