Suppr超能文献

利用分子动力学模拟研究超稳定 RNA 四链环的高分辨率可逆折叠。

High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations.

机构信息

Department of Physics and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180.

出版信息

Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16820-5. doi: 10.1073/pnas.1309392110. Epub 2013 Sep 16.

Abstract

We report the de novo folding of three hyperstable RNA tetraloops to 1-3 Å rmsd from their experimentally determined structures using molecular dynamics simulations initialized in the unfolded state. RNA tetraloops with loop sequences UUCG, GCAA, or CUUG are hyperstable because of the formation of noncanonical loop-stabilizing interactions, and they are all faithfully reproduced to angstrom-level accuracy in replica exchange molecular dynamics simulations, including explicit solvent and ion molecules. This accuracy is accomplished using unique RNA parameters, in which biases that favor rigid, highly stacked conformations are corrected to accurately capture the inherent flexibility of ssRNA loops, accurate base stacking energetics, and purine syn-anti interconversions. In a departure from traditional quantum chemistrycentric approaches to force field optimization, our parameters are calibrated directly from thermodynamic and kinetic measurements of intra- and internucleotide structural transitions. The ability to recapitulate the signature noncanonical interactions of the three most abundant hyperstable stem loop motifs represents a significant milestone to the accurate prediction of RNA tertiary structure using unbiased all-atom molecular dynamics simulations.

摘要

我们报告了三个超稳定 RNA 四环的从头折叠,这些四环的折叠结构通过分子动力学模拟从其实验确定的结构中得到,模拟是从展开状态初始化的。具有 UUCG、GCAA 或 CUUG 环序列的 RNA 四环由于形成了非典型的环稳定相互作用而具有超稳定性,并且它们在 replica exchange 分子动力学模拟中都忠实地以埃精度重现,包括显式溶剂和离子分子。这种准确性是通过使用独特的 RNA 参数来实现的,其中,有利于刚性、高度堆积构象的偏差被校正,以准确捕捉 ssRNA 环的固有灵活性、准确的碱基堆积能和嘌呤顺反异构化。与传统的基于量子化学的力场优化方法不同,我们的参数是直接从核苷酸内和核苷酸间结构转变的热力学和动力学测量中校准的。能够重现三种最丰富的超稳定茎环模体的特征非典型相互作用,代表了使用无偏全原子分子动力学模拟准确预测 RNA 三级结构的一个重要里程碑。

相似文献

1
High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations.
Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16820-5. doi: 10.1073/pnas.1309392110. Epub 2013 Sep 16.
2
Gaussian Accelerated Molecular Dynamics in OpenMM.
J Phys Chem B. 2022 Aug 11;126(31):5810-5820. doi: 10.1021/acs.jpcb.2c03765. Epub 2022 Jul 27.
3
Free-energy landscape of a hyperstable RNA tetraloop.
Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6665-70. doi: 10.1073/pnas.1603154113. Epub 2016 May 27.
5
Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies.
J Chem Theory Comput. 2016 Sep 13;12(9):4534-48. doi: 10.1021/acs.jctc.6b00300. Epub 2016 Aug 4.
6
Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins.
J Chem Theory Comput. 2010 Dec 14;6(12):3836-3849. doi: 10.1021/ct100481h. Epub 2010 Nov 9.
7
Computer Folding of RNA Tetraloops? Are We There Yet?
J Chem Theory Comput. 2013 Apr 9;9(4):2115-25. doi: 10.1021/ct301086z. Epub 2013 Mar 7.
8
Dynamics and stability of GCAA tetraloops with 2-aminopurine and purine substitutions.
J Biomol Struct Dyn. 2005 Feb;22(4):425-39. doi: 10.1080/07391102.2005.10507014.
10
Free energy profile of RNA hairpins: a molecular dynamics simulation study.
Biophys J. 2010 Feb 17;98(4):627-36. doi: 10.1016/j.bpj.2009.10.040.

引用本文的文献

1
RNA adapts its flexibility to efficiently fold and resist unfolding.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf681.
2
Sequence, structure, and affinity of miR-34a binding sites determine repression efficacy.
Nucleic Acids Res. 2025 Jul 8;53(13). doi: 10.1093/nar/gkaf633.
3
Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery.
Mol Pharm. 2025 Mar 3;22(3):1110-1141. doi: 10.1021/acs.molpharmaceut.4c00744. Epub 2025 Jan 29.
4
Can We Ever Develop an Ideal RNA Force Field? Lessons Learned from Simulations of the UUCG RNA Tetraloop and Other Systems.
J Chem Theory Comput. 2025 Apr 22;21(8):4183-4202. doi: 10.1021/acs.jctc.4c01357. Epub 2025 Jan 15.
5
RNA adapts its flexibility to efficiently fold and resist unfolding.
bioRxiv. 2024 Nov 5:2024.05.27.595525. doi: 10.1101/2024.05.27.595525.
6
The effect of pseudoknot base pairing on cotranscriptional structural switching of the fluoride riboswitch.
Nucleic Acids Res. 2024 May 8;52(8):4466-4482. doi: 10.1093/nar/gkae231.
7
Inosine-Induced Base Pairing Diversity during Reverse Transcription.
ACS Chem Biol. 2024 Feb 16;19(2):348-356. doi: 10.1021/acschembio.3c00555. Epub 2024 Jan 22.
8
van der Waals Parameter Scanning with Amber Nucleic Acid Force Fields: Revisiting Means to Better Capture the RNA/DNA Structure through MD.
J Chem Theory Comput. 2024 Jan 23;20(2):625-643. doi: 10.1021/acs.jctc.3c01164. Epub 2023 Dec 29.
9
Simple Adjustment of Intranucleotide Base-Phosphate Interaction in the OL3 AMBER Force Field Improves RNA Simulations.
J Chem Theory Comput. 2023 Nov 28;19(22):8423-8433. doi: 10.1021/acs.jctc.3c00990. Epub 2023 Nov 9.
10
Enhanced molecular dynamic simulation studies unravel long-range effects caused by sequence variations and partner binding in RNA aptamers.
Mol Ther Nucleic Acids. 2023 Sep 29;34:102039. doi: 10.1016/j.omtn.2023.102039. eCollection 2023 Dec 12.

本文引用的文献

3
Computer Folding of RNA Tetraloops? Are We There Yet?
J Chem Theory Comput. 2013 Apr 9;9(4):2115-25. doi: 10.1021/ct301086z. Epub 2013 Mar 7.
4
How fast-folding proteins fold.
Science. 2011 Oct 28;334(6055):517-20. doi: 10.1126/science.1208351.
6
Four small puzzles that Rosetta doesn't solve.
PLoS One. 2011;6(5):e20044. doi: 10.1371/journal.pone.0020044. Epub 2011 May 20.
7
RNA tetraloop folding reveals tension between backbone restraints and molecular interactions.
J Am Chem Soc. 2010 Sep 15;132(36):12679-89. doi: 10.1021/ja104387k.
9
Reparameterization of RNA chi Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine.
J Chem Theory Comput. 2010 May 11;6(5):1520-1531. doi: 10.1021/ct900604a. Epub 2010 Apr 16.
10
Folding of a small RNA hairpin based on simulation with replica exchange molecular dynamics.
J Phys Chem B. 2010 May 6;114(17):5835-9. doi: 10.1021/jp904573r.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验