Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, United States.
J Phys Chem B. 2022 Aug 11;126(31):5810-5820. doi: 10.1021/acs.jpcb.2c03765. Epub 2022 Jul 27.
Gaussian accelerated molecular dynamics (GaMD) is a computational technique that provides both unconstrained enhanced sampling and free energy calculations of biomolecules. Here, we present the implementation of GaMD in the OpenMM simulation package and validate it on model systems of alanine dipeptide and RNA folding. For alanine dipeptide, 30 ns GaMD production simulations reproduced free energy profiles of 1000 ns conventional molecular dynamics (cMD) simulations. In addition, GaMD simulations captured the folding pathways of three hyperstable RNA tetraloops (UUCG, GCAA, and CUUG) and binding of the rbt203 ligand to the HIV-1 Tar RNA, both of which involved critical electrostatic interactions such as hydrogen bonding and base stacking. Together with previous implementations, GaMD in OpenMM will allow for wider applications in simulations of proteins, RNA, and other biomolecules.
高斯加速分子动力学(GaMD)是一种计算技术,可提供生物分子的无约束增强采样和自由能计算。在这里,我们在 OpenMM 模拟包中实现了 GaMD,并在丙氨酸二肽和 RNA 折叠的模型系统上对其进行了验证。对于丙氨酸二肽,30 ns GaMD 生产模拟复制了 1000 ns 常规分子动力学(cMD)模拟的自由能曲线。此外,GaMD 模拟还捕获了三个超稳定 RNA 四环(UUCG、GCAA 和 CUUG)的折叠途径以及 rbt203 配体与 HIV-1 Tar RNA 的结合,这两个过程都涉及关键的静电相互作用,如氢键和碱基堆积。结合以前的实现,OpenMM 中的 GaMD 将允许在蛋白质、RNA 和其他生物分子的模拟中更广泛地应用。