Rauh Johannes, Ay Nihat
Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103, Leipzig, Germany,
Theory Biosci. 2014 Jun;133(2):63-78. doi: 10.1007/s12064-013-0186-3. Epub 2013 Sep 18.
We study a notion of knockout robustness of a stochastic map (Markov kernel) that describes a system of several input random variables and one output random variable. Robustness requires that the behaviour of the system does not change if one or several of the input variables are knocked out. Gibbs potentials are used to give a mechanistic description of the behaviour of the system after knockouts. Robustness imposes structural constraints on these potentials. We show that robust systems can be described in terms of suitable interaction families of Gibbs potentials, which allows us to address the problem of systems design. Robustness is also characterized by conditional independence constraints on the joint distribution of input and output. The set of all probability distributions corresponding to robust systems can be decomposed into a finite union of components, and we find parametrizations of the components.
我们研究了一种随机映射(马尔可夫核)的剔除鲁棒性概念,该随机映射描述了一个包含多个输入随机变量和一个输出随机变量的系统。鲁棒性要求如果剔除一个或多个输入变量,系统的行为不会改变。吉布斯势被用于给出剔除后系统行为的机械描述。鲁棒性对这些势施加了结构约束。我们表明,鲁棒系统可以用吉布斯势的合适相互作用族来描述,这使我们能够解决系统设计问题。鲁棒性还由输入和输出联合分布上的条件独立性约束来表征。与鲁棒系统相对应的所有概率分布的集合可以分解为有限个分量的并集,并且我们找到了这些分量的参数化表示。